Ordinal Multiplication is Closed

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x$ and $y$ be ordinals.


Let $\On$ denote the class of all ordinals.

$x \cdot y \in \On$


Proof

The proof proceeds by transfinite induction on $y$.


Basis for the Induction

\(\ds x \cdot \O\) \(=\) \(\ds \O\) Definition of Ordinal Multiplication
\(\ds \O\) \(\in\) \(\ds \On\) Empty Set is Ordinal
\(\ds \leadsto \ \ \) \(\ds x \cdot \O\) \(\in\) \(\ds \On\) Substitutivity of Equality

This proves the basis for the induction.


Induction Step

\(\ds x \cdot y\) \(\in\) \(\ds \On\)
\(\ds \leadsto \ \ \) \(\ds \paren {x \cdot y} + y\) \(\in\) \(\ds \On\) Ordinal Addition is Closed
\(\ds x \cdot y^+\) \(=\) \(\ds \paren {x \cdot y} + y\) Definition of Ordinal Multiplication
\(\ds \leadsto \ \ \) \(\ds x \cdot y^+\) \(\in\) \(\ds \On\) Substitutivity of Equality

This proves the induction step.


Limit Case

\(\ds \forall z \in y: \, \) \(\ds x \cdot z\) \(\in\) \(\ds \On\) by hypothesis
\(\ds \leadsto \ \ \) \(\ds \bigcup_{z \mathop \in y} \paren {x \cdot z}\) \(\in\) \(\ds \On\) Union of Set of Ordinals is Ordinal: Corollary
\(\ds x \cdot y\) \(=\) \(\ds \bigcup_{z \mathop \in y} \paren {x \cdot z}\) Definition of Ordinal Multiplication
\(\ds \leadsto \ \ \) \(\ds x \cdot y\) \(\in\) \(\ds \On\) Substitutivity of Equality

This proves the limit case.

$\blacksquare$


Sources