Ordinal Multiplication via Cantor Normal Form/Infinite Exponent

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x$ and $y$ be ordinals.

Let $x > 1$.

Let $y \ge \omega$ where $\omega$ denotes the minimally inductive set.

Let $\sequence {a_i}$ be a sequence of ordinals that is strictly decreasing on $1 \le i \le n$.

Let $\sequence {b_i}$ be a sequence of ordinals such that $0 < b_i < x$ for all $1 \le i \le n$.


Then:

$\ds \sum_{i \mathop = 1}^n \paren {x^{a_i} b_i} \times x^y = x^{a_1 \mathop + y}$


Proof

It follows that:

\(\ds x^{a_1}\) \(\le\) \(\ds \sum_{i \mathop = 1}^n \paren {x^{a_i} b_i}\) Ordinal is Less than Sum
\(\ds \) \(<\) \(\ds x^{a_1 + 1}\) Upper Bound of Ordinal Sum


By multiplying the inequalities by $x^y$ on the left:

\(\ds x^{a_1} \times x^y\) \(\le\) \(\ds \sum_{i \mathop = 1}^n \paren {x^{a_i} b_i} \times x^y\) Subset is Right Compatible with Ordinal Multiplication
\(\ds \) \(\le\) \(\ds x^{a_1 \mathop + 1} \times x^y\)


Solving for both sides of the inequality:

\(\ds x^{a_1} \times x^y\) \(=\) \(\ds x^{a_1 \mathop + y}\) Ordinal Sum of Powers
\(\ds x^{a_1 \mathop + 1} \times x^y\) \(=\) \(\ds x^{\paren {a_1 \mathop + 1} \mathop + y}\) Ordinal Sum of Powers
\(\ds \) \(=\) \(\ds x^{a_1 \mathop + \paren {1 \mathop + y} }\) Ordinal Addition is Associative
\(\ds \) \(=\) \(\ds x^{a_1 \mathop + y}\) Finite Ordinal Plus Transfinite Ordinal


Therefore:

\(\ds x^{a_1 \mathop + y}\) \(\le\) \(\ds \sum_{i \mathop = 1}^n \paren {x^{a_i} b_i} \times x^y\) Substitutivity of Class Equality
\(\ds \) \(\le\) \(\ds x^{a_1 \mathop + y}\) Substitutivity of Class Equality
\(\ds \leadsto \ \ \) \(\ds \sum_{i \mathop = 1}^n \paren {x^{a_i} b_i} \times x^y\) \(=\) \(\ds x^{a_1 \mathop + y}\) Definition 2 of Set Equality

$\blacksquare$


Also see


Sources