Ordinal Power of Power

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x$, $y$, and $z$ be ordinals.


Then:

$\paren {x^y}^z = x^{y \mathop \times z}$


Proof

The proof shall proceed by Transfinite Induction on $z$.


Basis for the Induction

\(\ds \paren {x^y}^0\) \(=\) \(\ds 1\) Definition of Ordinal Exponentiation
\(\ds \) \(=\) \(\ds x^0\) Definition of Ordinal Exponentiation
\(\ds \) \(=\) \(\ds x^{y \times 0}\) Definition of Ordinal Multiplication

This proves the basis for the induction.

$\Box$

Induction Step

Suppose $\paren {x^y}^z = x^{y \times z}$.


Then:

\(\ds \paren {x^y}^{z^+}\) \(=\) \(\ds \paren {x^y}^z \times x^y\) Definition of Ordinal Exponentiation
\(\ds \) \(=\) \(\ds x^{y \times z} \times x^y\) Inductive Hypothesis
\(\ds \) \(=\) \(\ds x^{\paren {y \times z} + y}\) Ordinal Sum of Powers
\(\ds \) \(=\) \(\ds x^{y \times z^+}\) Definition of Ordinal Multiplication

This proves the induction step.

$\Box$

Limit Case

Suppose $\paren {x^y}^w = x^{y \times w}$ for all $w \in z$ where $z$ is a limit ordinal.


Then:

\(\ds \forall w \in z: \, \) \(\ds \left({x^y}\right)^w\) \(=\) \(\ds x^{y \mathop \times w}\) Inductive Hypothesis
\(\ds \leadsto \ \ \) \(\ds \bigcup_{w \mathop \in z} \paren {x^y}^w\) \(=\) \(\ds \bigcup_{w \mathop \in z} x^{y \times w}\) Indexed Union Equality
\(\ds \leadsto \ \ \) \(\ds \paren {x^y}^z\) \(=\) \(\ds \bigcup_{w \mathop \in z} x^{y \times w}\) Definition of Ordinal Exponentiation


To prove the statement, it is necessary and sufficient to prove that:

$\ds \bigcup_{w \mathop \in z} x^{y \times w} = x^{y \times z}$

The proof of this shall proceed by cases:


Case 1

If $y = 0$, it follows that:

\(\ds \paren {x^y}^z\) \(=\) \(\ds 1^z\) Definition of Ordinal Exponentiation
\(\ds \) \(=\) \(\ds 1\) Exponent Base of One
\(\ds \) \(=\) \(\ds x^0\) Definition of Ordinal Exponentiation
\(\ds \) \(=\) \(\ds x^{y \times z}\) Ordinal Multiplication by Zero


Case 2

If $y \ne 0$:

\(\ds w\) \(\in\) \(\ds z\)
\(\ds \leadsto \ \ \) \(\ds y \times w\) \(\le\) \(\ds y \times z\) Membership is Left Compatible with Ordinal Multiplication and Ordinal Multiplication by Zero
\(\ds \leadsto \ \ \) \(\ds x^{y \times w}\) \(\le\) \(\ds x^{y \times z}\) Membership is Left Compatible with Ordinal Exponentiation and definition of ordinal exponentiation


Therefore, by Supremum Inequality for Ordinals, it follows that:

$\ds \bigcup_{w \mathop \in z} x^{y \times w} \le x^{y \times z}$


Conversely:

\(\ds v\) \(\in\) \(\ds y \times z\)
\(\ds \leadsto \ \ \) \(\ds \exists w \in z: \, \) \(\ds v\) \(\in\) \(\ds y \times w\) Ordinal is Less than Ordinal times Limit
\(\ds \leadsto \ \ \) \(\ds x^v\) \(\le\) \(\ds x^{y \times w}\) Membership is Left Compatible with Ordinal Exponentiation

By Supremum Inequality for Ordinals, it follows that:

$\ds \bigcup_{v \mathop \in y \times z} x^v \le \bigcup_{w \mathop \in z} x^{y \times w}$


Therefore, by definition of ordinal exponentiation:

\(\ds x^{y \times z}\) \(=\) \(\ds \bigcup_{w \mathop \in z} x^{y \times w}\)
\(\ds \) \(=\) \(\ds \paren {x^y}^z\)

This proves the limit case.

$\blacksquare$


Sources