Parity of Conjugate of Permutation

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S_n$ denote the symmetric group on $n$ letters.


Then:

$\forall \pi, \rho \in S_n: \map \sgn {\pi \rho \pi^{-1} } = \map \sgn \rho$

where $\map \sgn \pi$ is the sign of $\pi$.


Proof

As $\map \sgn \pi = \pm 1$ for any $\pi \in S_n$, we can apply the laws of commutativity and associativity:

\(\ds \map \sgn \pi \, \map \sgn \rho\) \(=\) \(\ds \map \sgn \rho \, \map \sgn \pi\)
\(\ds \leadsto \ \ \) \(\ds \map \sgn \pi \, \map \sgn \rho \, \map \sgn {\pi^{-1} }\) \(=\) \(\ds \map \sgn \rho \, \map \sgn \pi \, \map \sgn {\pi^{-1} }\)
\(\ds \leadsto \ \ \) \(\ds \map \sgn {\pi \rho \pi^{-1} }\) \(=\) \(\ds \map \sgn \rho\) Parity Function is Homomorphism

$\blacksquare$


Sources