Partial Quotients of Continued Fraction Expansion of Irrational Square Root
Theorem
Let $n \in \Z$ such that $n$ is not a square.
Let the continued fraction expansion of $\sqrt n$ be expressed as:
- $\left[{a_0, a_1, a_2, \ldots}\right]$
Then the partial quotients of this continued fraction expansion can be calculated as:
- $a_r = \left\lfloor{\dfrac{\left\lfloor{\sqrt n}\right\rfloor + P_r} {Q_r} }\right\rfloor$
where:
- $P_r = \begin{cases} 0 & : r = 0 \\
a_{r - 1} Q_{r - 1} - P_{r - 1} & : r > 0 \\ \end{cases}$
- $Q_r = \begin{cases} 1 & : r = 0 \\
\dfrac {n - {P_r}^2} {Q_{r - 1} } & : r > 0 \\ \end{cases}$
Proof
The proof proceeds by strong induction.
For all $r \in \Z_{\ge 0}$, let $P \left({r}\right)$ be the proposition:
- $a_r = \left\lfloor{\dfrac{\left\lfloor{\sqrt n}\right\rfloor + P_r} {Q_r} }\right\rfloor$
where:
- $P_r = \begin{cases} 0 & : r = 0 \\
a_{r - 1} Q_{r - 1} - P_{r - 1} & : r > 0 \\ \end{cases}$
- $Q_r = \begin{cases} 1 & : r = 0 \\
\dfrac {n - {P_r}^2} {Q_{r - 1} } & : r > 0 \\ \end{cases}$
Edge Cases
By definition of the structure of a continued fraction:
- $\sqrt n = a_0 + \dfrac 1 {x_1}$
for some $a_0 \in \Z$ and $x_1 \in \R_{>0}$.
Thus:
\(\ds a_0\) | \(=\) | \(\ds \left\lfloor{\sqrt n}\right\rfloor\) | Definition of Floor Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \left\lfloor{\dfrac {\sqrt n + 0} 1}\right\rfloor\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \left\lfloor{\dfrac {\sqrt n + P_0} {Q_0} }\right\rfloor\) | Definition of $P_0$ and $Q_0$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \left\lfloor{\dfrac {\left\lfloor{\sqrt n}\right\rfloor + P_0} {Q_0} }\right\rfloor\) | Floor of $\dfrac {x + m} n$ |
Thus $P \left({0}\right)$ is seen to hold.
We have that:
- $\sqrt n = a_0 + \dfrac 1 {x_1}$
Then:
\(\ds \dfrac 1 {x_1}\) | \(=\) | \(\ds \sqrt n - a_0\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds x_1\) | \(=\) | \(\ds \dfrac 1 {n - a_0}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\sqrt n + a_0} {\left({\sqrt n - a_0}\right) \left({\sqrt n + a_0}\right)}\) | multiplying top and bottom by $\sqrt n + a_0$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\sqrt n + P_1} {Q_1}\) | Definition of $P_1$ and $Q_1$ |
By definition of the structure of a continued fraction:
- $x_1 = a_1 + \dfrac 1 {x_2}$
for some $a_1 \in \Z$ and $x_2 \in \R_{>0}$.
Hence:
\(\ds a_1\) | \(=\) | \(\ds \left\lfloor{\dfrac {\sqrt n + P_1} {Q_1} }\right\rfloor\) | Definition of Floor Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \left\lfloor{\dfrac {\left\lfloor{\sqrt n}\right\rfloor + P_1} {Q_1} }\right\rfloor\) | Floor of $\dfrac {x + m} n$ |
Thus $P \left({1}\right)$ is seen to hold.
Basis for the Induction
We have that:
- $x_1 = a_1 + \dfrac 1 {x_2}$
Then:
\(\ds \dfrac 1 {x_2}\) | \(=\) | \(\ds x_1 - a_1\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\sqrt n + P_1} {Q_1} - a_1\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\sqrt n + P_1 - a_1 Q_1} {Q_1}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds x_2\) | \(=\) | \(\ds \dfrac {Q_1} {\sqrt n - \left({a_1 Q_1 - P_1}\right) }\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {Q_1} {\sqrt n - P_2}\) | Definition of $P_2$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {Q_1 \left({\sqrt n + P_2}\right)} {\left({\sqrt n - P_2}\right) \left({\sqrt n + P_2}\right)}\) | multiplying top and bottom by $\sqrt n + P_2$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {Q_1 \left({\sqrt n + P_2}\right)} {n - {P_2}^2}\) | Difference of Two Squares | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\sqrt n + P_2} {\left({n - {P_2}^2}\right) / Q_1}\) | By Expansion of Associated Reduced Quadratic Irrational, $\left({n - {P_2}^2}\right) / Q_1$ is an integer | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\sqrt n + P_2} {Q_2}\) | Definition of $Q_2$ |
By definition of the structure of a continued fraction:
- $x_2 = a_2 + \dfrac 1 {x_3}$
for some $a_2 \in \Z$ and $x_3 \in \R_{>0}$.
Thus:
\(\ds a_2\) | \(=\) | \(\ds \left\lfloor{\dfrac {\sqrt n + P_2} {Q_2} }\right\rfloor\) | Definition of Floor Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \left\lfloor{\dfrac {\left\lfloor{\sqrt n}\right\rfloor + P_2} {Q_2} }\right\rfloor\) | Floor of $\dfrac {x + m} n$ |
This is the basis for the induction.
Induction Hypothesis
Now it needs to be shown that, if $P \left({k - 1}\right)$ and $P \left({k}\right)$ ares true, for all $k \ge 2$, then it logically follows that $P \left({k + 1}\right)$ is true.
This is the induction hypothesis:
- $a_k = \left\lfloor{\dfrac{a_0 + P_k} {Q_k} }\right\rfloor$
where:
- $P_k = a_{k - 1} Q_{k - 1} - P_{k - 1}$
- $Q_k = \dfrac {n - {P_k}^2} {Q_{k - 1} }$
and:
- $x_k = \dfrac{\sqrt n + P_k} {Q_k}$
from which it is to be shown that:
- $a_{k + 1} = \left\lfloor{\dfrac{a_0 + P_{k + 1} } {Q_{k + 1} } }\right\rfloor$
where:
- $P_{k + 1} = a_k Q_k - P_k$
- $Q_{k + 1} = \dfrac {n - {P_{k + 1} }^2} {Q_k}$
and:
- $x_{k + 1} = \dfrac{\sqrt n + P_{k + 1} } {Q_{k + 1} }$
Induction Step
This is the induction step:
By definition of the structure of a continued fraction:
- $x_k = a_k + \dfrac 1 {x_{k+1} }$
where:
- $x_{k+1} \in \R_{>0}$
- $a_k = \left\lfloor{\dfrac{a_0 + P_k} {Q_k} }\right\rfloor$
by the induction hypothesis.
Then:
\(\ds \dfrac 1 {x_{k+1} }\) | \(=\) | \(\ds x_k - a_k\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\sqrt n + P_k} {Q_k} - a_k\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\sqrt n + P_k - a_k Q_k} {Q_k}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds x_2\) | \(=\) | \(\ds \dfrac {Q_k} {\sqrt n - \left({a_k Q_k - P_k}\right) }\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {Q_k} {\sqrt n - P_{k + 1} }\) | Definition of $P_{k + 1}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {Q_k \left({\sqrt n + P_{k + 1} }\right)} {\left({\sqrt n - P_{k + 1} }\right) \left({\sqrt n + P_{k + 1} }\right)}\) | multiplying top and bottom by $\sqrt n + P_{k + 1}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {Q_k \left({\sqrt n + P_{k + 1} }\right)} {n - {P_{k + 1} }^2}\) | Difference of Two Squares | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\sqrt n + P_{k + 1} } {\left({n - {P_{k + 1} }^2}\right) / Q_k}\) | By Expansion of Associated Reduced Quadratic Irrational, $\left({n - {P_{k + 1} }^2}\right) / Q_k$ is an integer | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\sqrt n + P_{k + 1} } {Q_{k + 1} }\) | Definition of $Q_{k + 1}$ |
By definition of the structure of a continued fraction:
- $x_{k + 1} = a_{k + 1} + \dfrac 1 {x_{k + 2} }$
for some $a_{k + 1} \in \Z$ and $x_{k + 2} \in \R_{>0}$.
Thus:
\(\ds a_{k + 1}\) | \(=\) | \(\ds \left\lfloor{\dfrac {\sqrt n + P_{k + 1} } {Q_{k + 1} } }\right\rfloor\) | Definition of Floor Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \left\lfloor{\dfrac {\left\lfloor{\sqrt n}\right\rfloor + P_{k + 1} } {Q_{k + 1} } }\right\rfloor\) | Floor of $\dfrac {x + m} n$ |
So $P \left({k}\right) \implies P \left({k + 1}\right)$ and the result follows by the Second Principle of Mathematical Induction.
Hence the result.
$\blacksquare$
Sources
- Weisstein, Eric W. "Pell Equation." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/PellEquation.html