Pascal's Rule/Complex Numbers

From ProofWiki
Jump to navigation Jump to search

Theorem

For all $z, w \in \C$ such that it is not the case that $z$ is a negative integer and $w$ an integer:

$\dbinom z {w - 1} + \dbinom z w = \dbinom {z + 1} w$

where $\dbinom z w$ is a binomial coefficient.


Proof

\(\ds \binom z {w - 1} + \binom z w\) \(=\) \(\ds \lim_{\zeta \mathop \to z} \lim_{\omega \mathop \to w} \dfrac {\map \Gamma {\zeta + 1} } {\map \Gamma \omega \map \Gamma {\zeta - \omega + 2} } + \lim_{\zeta \mathop \to z} \lim_{\omega \mathop \to w} \dfrac {\map \Gamma {\zeta + 1} } {\map \Gamma {\omega + 1} \map \Gamma {\zeta - \omega + 1} }\) Definition of Binomial Coefficient
\(\ds \) \(=\) \(\ds \lim_{\zeta \mathop \to z} \lim_{\omega \mathop \to w} \paren {\dfrac {\map \Gamma {\zeta + 1} } {\map \Gamma \omega \map \Gamma {\zeta - \omega + 2} } + \dfrac {\map \Gamma {\zeta + 1} } {\map \Gamma {\omega + 1} \map \Gamma {\zeta - \omega + 1} } }\) Sum Rule for Limits of Complex Functions
\(\ds \) \(=\) \(\ds \lim_{\zeta \mathop \to z} \lim_{\omega \mathop \to w} \paren {\dfrac {\map \Gamma {\zeta + 1} } {\map \Gamma \omega \paren {\zeta - \omega + 1} \map \Gamma {\zeta - \omega + 1} } + \dfrac {\map \Gamma {\zeta + 1} } {\omega \map \Gamma \omega \map \Gamma {\zeta - \omega + 1} } }\) Gamma Difference Equation
\(\ds \) \(=\) \(\ds \lim_{\zeta \mathop \to z} \lim_{\omega \mathop \to w} \paren {\dfrac {\omega \map \Gamma {\zeta + 1} + \paren {\zeta - \omega + 1} \map \Gamma {\zeta + 1} } {\omega \map \Gamma \omega \paren {\zeta - \omega + 1} \map \Gamma {\zeta - \omega + 1} } }\) common demonimator
\(\ds \) \(=\) \(\ds \lim_{\zeta \mathop \to z} \lim_{\omega \mathop \to w} \paren {\dfrac {\omega \map \Gamma {\zeta + 1} + \paren {\zeta - \omega + 1} \map \Gamma {\zeta + 1} } {\map \Gamma {\omega + 1} \map \Gamma {\zeta - \omega + 2} } }\) Gamma Difference Equation
\(\ds \) \(=\) \(\ds \lim_{\zeta \mathop \to z} \lim_{\omega \mathop \to w} \paren {\dfrac {\map \Gamma {\zeta + 1} \paren {\zeta - \omega + 1 + \omega} } {\map \Gamma {\omega + 1} \map \Gamma {\zeta - \omega + 2} } }\)
\(\ds \) \(=\) \(\ds \lim_{\zeta \mathop \to z} \lim_{\omega \mathop \to w} \paren {\dfrac {\map \Gamma {\zeta + 1} \paren {\zeta + 1} } {\map \Gamma {\omega + 1} \map \Gamma {\zeta - \omega + 2} } }\)
\(\ds \) \(=\) \(\ds \lim_{\zeta \mathop \to z} \lim_{\omega \mathop \to w} \paren {\dfrac {\map \Gamma {\zeta + 2} } {\map \Gamma {\omega + 1} \map \Gamma {\zeta - \omega + 2} } }\) Gamma Difference Equation
\(\ds \) \(=\) \(\ds \binom {z + 1} w\) Definition of Binomial Coefficient

$\blacksquare$


Sources