Points Defined by Adjacent Pairs of Digits of Reciprocal of 7 lie on Ellipse

From ProofWiki
Jump to navigation Jump to search

Theorem

Consider the digits that form the recurring part of the reciprocal of $7$:

$\dfrac 1 7 = 0 \cdotp \dot 14285 \dot 7$

Take the digits in ordered pairs, and treat them as coordinates of a Cartesian plane.

It will be found that they all lie on an ellipse:


EllipseFromSeventh.png


Proof

EllipseFromSeventhSolution.png


Let the points be labelled to simplify:

$A := \tuple {1, 4}$
$B := \tuple {2, 8}$
$C := \tuple {4, 2}$
$D := \tuple {8, 5}$
$E := \tuple {7, 1}$
$F := \tuple {5, 7}$


Let $ABCDEF$ be considered as a hexagon.


We join the opposite points of $ABCDEF$:

$AF: \tuple {1, 4} \to \tuple {5, 7}$
$BC: \tuple {2, 8} \to \tuple {4, 2}$
$BE: \tuple {2, 8} \to \tuple {7, 1}$
$AD: \tuple {1, 4} \to \tuple {8, 5}$
$CD: \tuple {4, 2} \to \tuple {8, 5}$
$EF: \tuple {7, 1} \to \tuple {5, 7}$

It is to be shown that the intersections of:

$AF$ and $BC$
$BE$ and $AD$
$CD$ and $EF$

all lie on the same straight line.


The result then follows from Pascal's Mystic Hexagram.


From Equation of Straight Line in Plane through Two Points:

$\dfrac {y - y_1} {x - x_1} = \dfrac {y_2 - y_1} {x_2 - x_1}$


Thus:

\(\text {(AF)}: \quad\) \(\ds \frac {y - 4} {x - 1}\) \(=\) \(\ds \frac {7 - 4} {5 - 1}\)
\(\ds \) \(=\) \(\ds \frac 3 4\)
\(\ds \leadsto \ \ \) \(\ds 4 \paren {y - 4}\) \(=\) \(\ds 3 \paren {x - 1}\)
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds \dfrac 3 4 x + \dfrac {13} 4\)


\(\text {(BC)}: \quad\) \(\ds \frac {y - 8} {x - 2}\) \(=\) \(\ds \frac {2 - 8} {4 - 2}\)
\(\ds \) \(=\) \(\ds -3\)
\(\ds \leadsto \ \ \) \(\ds y - 8\) \(=\) \(\ds -3 \paren {x - 2}\)
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds -3 x + 14\)


\(\text {(BE)}: \quad\) \(\ds \frac {y - 8} {x - 2}\) \(=\) \(\ds \frac {1 - 8} {7 - 2}\)
\(\ds \) \(=\) \(\ds -\frac 7 5\)
\(\ds \leadsto \ \ \) \(\ds 5 \paren {y - 8}\) \(=\) \(\ds -7 \paren {x - 2}\)
\(\ds \leadsto \ \ \) \(\ds 5 y - 40\) \(=\) \(\ds -7 x + 14\)
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds -\frac 7 5 x + \frac {54} 5\)


\(\text {(AD)}: \quad\) \(\ds \frac {y - 4} {x - 1}\) \(=\) \(\ds \frac {5 - 4} {8 - 1}\)
\(\ds \) \(=\) \(\ds \frac 1 7\)
\(\ds \leadsto \ \ \) \(\ds 7 \paren {y - 4}\) \(=\) \(\ds x - 1\)
\(\ds \leadsto \ \ \) \(\ds 7 y - 28\) \(=\) \(\ds x - 1\)
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds \frac x 7 + \frac {27} 7\)


\(\text {(CD)}: \quad\) \(\ds \frac {y - 2} {x - 4}\) \(=\) \(\ds \frac {5 - 2} {8 - 4}\)
\(\ds \) \(=\) \(\ds \frac 3 4\)
\(\ds \leadsto \ \ \) \(\ds 4 \paren {y - 2}\) \(=\) \(\ds 3 \paren {x - 4}\)
\(\ds \leadsto \ \ \) \(\ds 4 y - 8\) \(=\) \(\ds 3 x - 12\)
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds \frac 3 4 x - 1\)


\(\text {(EF)}: \quad\) \(\ds \frac {y - 1} {x - 7}\) \(=\) \(\ds \frac {7 - 1} {5 - 7}\)
\(\ds \) \(=\) \(\ds -3\)
\(\ds \leadsto \ \ \) \(\ds y - 1\) \(=\) \(\ds -3 x + 21\)
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds -3 x + 22\)


Evaluate the intersection of $AF$ and $BC$:

\(\ds y\) \(=\) \(\ds \dfrac 3 4 x + \dfrac {13} 4\)
\(\ds y\) \(=\) \(\ds -3 x + 14\)
\(\ds \leadsto \ \ \) \(\ds \dfrac 3 4 x + \dfrac {13} 4\) \(=\) \(\ds -3 x + 14\)
\(\ds \leadsto \ \ \) \(\ds 3 x + 13\) \(=\) \(\ds -12 x + 56\)
\(\ds \leadsto \ \ \) \(\ds 15 x\) \(=\) \(\ds 43\)
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds \dfrac {43} {15}\)
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds -3 \paren {\dfrac {43} {15} } + 14\)
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds \dfrac {-129 + 210} {15}\)
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds \dfrac {81} {15}\)
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds \dfrac {27} 5\)

So $AF$ and $BC$ intersect at $\paren {\dfrac {43} {15}, \dfrac {27} 5}$.


Evaluate the intersection of $BE$ and $AD$:

\(\ds y\) \(=\) \(\ds -\frac 7 5 x + \frac {54} 5\)
\(\ds y\) \(=\) \(\ds \frac x 7 + \frac {27} 7\)
\(\ds \leadsto \ \ \) \(\ds -\frac 7 5 x + \frac {54} 5\) \(=\) \(\ds \frac x 7 + \frac {27} 7\)
\(\ds \leadsto \ \ \) \(\ds -49 x + 378\) \(=\) \(\ds 5 x + 135\)
\(\ds \leadsto \ \ \) \(\ds 54 x\) \(=\) \(\ds 243\)
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds \dfrac 9 2\)
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds \frac 1 7 \paren {\frac 9 2} + \frac {27} 7\)
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds \dfrac {9 + 54} {14}\)
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds \dfrac {63} {14}\)
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds \dfrac 9 2\)

So $BE$ and $AD$ intersect at $\paren {\dfrac 9 2, \dfrac 9 2}$.


Evaluate the intersection of $CD$ and $EF$:

\(\ds y\) \(=\) \(\ds \frac 3 4 x - 1\)
\(\ds y\) \(=\) \(\ds -3 x + 22\)
\(\ds \leadsto \ \ \) \(\ds \frac 3 4 x - 1\) \(=\) \(\ds -3 x + 22\)
\(\ds \leadsto \ \ \) \(\ds \frac 3 x - 4\) \(=\) \(\ds -12 x + 88\)
\(\ds \leadsto \ \ \) \(\ds 15 x\) \(=\) \(\ds 92\)
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds \dfrac {92} {15}\)
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds -3 \paren {\dfrac {92} {15} } + 22\)
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds \dfrac {-92 + 110} 5\)
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds \dfrac {18} 5\)

So $CD$ and $EF$ intersect at $\paren {\dfrac {92} {15}, \dfrac {18} 5}$.

It remains to be shown that those points of intersection:

$\paren {\dfrac {43} {15}, \dfrac {27} 5}$, $\paren {\dfrac 9 2, \dfrac 9 2}$, $\paren {\dfrac {92} {15}, \dfrac {18} 5}$

all lie on the same straight line.


From Equation of Straight Line in Plane through Two Points:

$\dfrac {y - y_1} {x - x_1} = \dfrac {y_2 - y_1} {x_2 - x_1}$


Thus:

\(\ds \frac {y - \frac {27} 5} {x - \frac {43} {15} }\) \(=\) \(\ds \frac {\frac {18} 5 - \frac {27} 5} {\frac {92} {15} - \frac {43} {15} }\)
\(\ds \leadsto \ \ \) \(\ds \frac {5 y - 27} {15 x - 43}\) \(=\) \(\ds \frac {18 - 27} {92 - 43}\) simplifying
\(\ds \leadsto \ \ \) \(\ds \frac {5 y - 27} {15 x - 43}\) \(=\) \(\ds -\frac 9 {49}\)
\(\ds \leadsto \ \ \) \(\ds 245 y - 1323\) \(=\) \(\ds - 135 x + 387\)
\(\ds \leadsto \ \ \) \(\ds 245 y\) \(=\) \(\ds - 135 x + 1710\)
\(\ds \leadsto \ \ \) \(\ds 49 y + 27 x\) \(=\) \(\ds 342\)


It remains to demonstrate that $\paren {\dfrac 9 2, \dfrac 9 2}$ lies on this line:


\(\ds 49 \dfrac 9 2 + 27 \dfrac 9 2\) \(=\) \(\ds \dfrac {441 + 243} 2\)
\(\ds \) \(=\) \(\ds \dfrac {684} 2\)
\(\ds \) \(=\) \(\ds 342\)


Bingo.

$\blacksquare$


Sources