Power Reduction Formulas/Cosine Squared

From ProofWiki
Jump to navigation Jump to search

Theorem

$\cos^2 x = \dfrac {1 + \cos 2 x} 2$

where $\cos$ denotes cosine.


Proof 1

\(\ds 2 \cos^2 x - 1\) \(=\) \(\ds \cos 2 x\) Double Angle Formula for Cosine: Corollary $1$
\(\ds \cos^2 x\) \(=\) \(\ds \frac {1 + \cos 2 x} 2\) solving for $\cos^2 x$

$\blacksquare$


Proof 2

\(\ds \dfrac {1 + \cos 2 x} 2\) \(=\) \(\ds \dfrac 1 2 \paren {1 + \dfrac {e^{2 i x} + e^{-2 i x} } 2}\) Euler's Cosine Identity
\(\ds \) \(=\) \(\ds \dfrac 1 4 \paren {e^{2 i x} + 2 + e^{-2 i x} }\) simplifying
\(\ds \) \(=\) \(\ds \dfrac 1 4 \paren {e^{2 i x} + 2 \paren {e^{i x} } \paren {e^{-i x} } + e^{-2 i x} }\)
\(\ds \) \(=\) \(\ds \paren {\dfrac {e^{i x} + e^{-i x} } 2}^2\) Square of Sum
\(\ds \) \(=\) \(\ds \cos^2 x\) Euler's Cosine Identity

$\blacksquare$


Sources