Power Series Expansion for Cosine Integral Function plus Logarithm

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \map \Ci x = -\gamma - \ln x + \sum_{n \mathop = 1}^\infty \paren {-1}^{n + 1} \frac {x^{2 n} } {\paren {2 n} \times \paren {2 n}!}$

where:

$\Ci$ denotes the cosine integral function
$\gamma$ denotes the Euler-Mascheroni constant
$x$ is a strictly positive real number.


Proof

\(\ds \map \Ci x\) \(=\) \(\ds -\gamma - \ln x + \int_0^x \frac {1 - \cos u} u \rd u\) Characterization of Cosine Integral Function
\(\ds \) \(=\) \(\ds -\gamma - \ln x + \int_0^x \frac 1 u \paren {1 - \sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {u^{2 n} } {\paren {2 n}!} } \rd u\) Power Series Expansion for Cosine Function
\(\ds \) \(=\) \(\ds -\gamma - \ln x + \sum_{n \mathop = 1}^\infty \paren {-1}^{n + 1} \int_0^x \frac {u^{2 n - 1} } {\paren {2 n}!} \rd u\) Power Series is Termwise Integrable within Radius of Convergence
\(\ds \) \(=\) \(\ds -\gamma - \ln x + \sum_{n \mathop = 1}^\infty \paren {-1}^{n + 1} \frac {u^{2 n} } {\paren {2 n} \times \paren {2 n}!}\) Primitive of Power

$\blacksquare$


Sources