Power Series Expansion for Real Arccosine Function

From ProofWiki
Jump to navigation Jump to search

Theorem

The arccosine function has a Taylor Series expansion:

\(\ds \arccos x\) \(=\) \(\ds \frac \pi 2 - \sum_{n \mathop = 0}^\infty \frac {\paren {2 n}!} {2^{2 n} \paren {n!}^2} \frac {x^{2 n + 1} } {2 n + 1}\)
\(\ds \) \(=\) \(\ds \frac \pi 2 - \paren {x + \frac {x^3} {2 \times 3} + \frac {\paren {1 \times 3} x^5} {2 \times 4 \times 5} + \frac {\paren {1 \times 3 \times 5} x^7} {2 \times 4 \times 6 \times 7} + \cdots}\)

which converges for $-1 \le x \le 1$.


Proof

\(\ds \arccos x\) \(=\) \(\ds \frac {\pi} 2 - \arcsin x\) Sum of Arcsine and Arccosine
\(\ds \) \(=\) \(\ds \frac {\pi} 2 - \sum_{n \mathop = 0}^\infty \frac {\paren {2 n}!} {2^{2 n} \paren {n!}^2} \frac {x^{2 n + 1} } {2 n + 1}\) Power Series Expansion for Real Arcsine Function

It follows from Power Series Expansion for Real Arcsine Function that the series is convergent for $-1 \le x \le 1$.

$\blacksquare$


Also see


Sources