Power Series Expansion for Reciprocal of Cube of 1 + x/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x \in \R$ such that $-1 < x < 1$.

Then:

\(\ds \dfrac 1 {\paren {1 + x}^3}\) \(=\) \(\ds \sum_{k \mathop = 0}^\infty \paren {-1}^k \frac {\paren {k + 2} \paren {k + 1} } 2 x^k\)
\(\ds \) \(=\) \(\ds 1 - 3 x + 6 x^2 - 10 x^3 + 15 x^4 - \cdots\)


Proof

\(\ds \frac 1 {\paren {1 + x} }\) \(=\) \(\ds \paren {1 + x}^{-3}\)
\(\ds \) \(=\) \(\ds \sum_{k \mathop = 0}^\infty \frac {\paren {-3}^{\underline k} } {k!} x^k\) General Binomial Theorem
\(\ds \) \(=\) \(\ds \sum_{k \mathop = 0}^\infty \frac {\ds \prod_{j \mathop = 0}^{k - 1} \paren {\paren {-3} - j} } {k!} x^k\) Definition of Falling Factorial
\(\ds \) \(=\) \(\ds \sum_{k \mathop = 0}^\infty \frac {\ds \prod_{j \mathop = 0}^{k - 1} \paren {-\paren {j + 3} } } {\ds \prod_{j \mathop = 1}^k j} x^k\) Definition of Factorial and simplifying
\(\ds \) \(=\) \(\ds \sum_{k \mathop = 0}^\infty \frac {\ds \prod_{j \mathop = 1}^k \paren {-\paren {j + 2} } } {\ds \prod_{j \mathop = 1}^k j} x^k\) Translation of Index Variable of Product
\(\ds \) \(=\) \(\ds \sum_{k \mathop = 0}^\infty \frac {\paren {-1}^k \ds \prod_{j \mathop = 1}^k \paren {j + 2} } {\ds \prod_{j \mathop = 1}^k j} x^k\)
\(\ds \) \(=\) \(\ds \sum_{k \mathop = 0}^\infty \paren {-1}^k \frac {\paren {k + 2} \paren {k + 1} } 2 x^k\) simplification

$\blacksquare$


Sources