Power Structure Operation on Set of Singleton Subsets is Closed

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {S, \circ}$ be a magma.

Let $\struct {\powerset S, \circ_\PP}$ be the power structure of $S$.

Let $S'$ denote the set of singleton elements of $\powerset S$.


Then the algebraic structure $\struct {S', \circ_\PP}$ is closed.


Proof

Let $A, B \in S'$.

Then:

$\exists a, b \in S: A = \set a, B = \set b$

Hence:

\(\ds A \circ_\PP B\) \(=\) \(\ds \set {x \circ y: x \in A, y \in B}\)
\(\ds \) \(=\) \(\ds \set {a \circ b}\)
\(\ds \) \(\in\) \(\ds S'\)

Hence the result.

$\blacksquare$


Sources