Power of 2^10 Minus Power of 10^3 is Divisible by 24/Proof 3

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $n \in \Z_{\ge 0}$ be a non-negative integer.

Then $2^{10 n} - 10^{3 n}$ is divisible by $24$.


That is:

$2^{10 n} - 10^{3 n} \equiv 0 \pmod {24}$


Proof

\(\ds 2^{10 n} - 10^{3 n}\) \(=\) \(\ds \paren {2^{10} }^n - \paren {10^3}^n\) Power of Power
\(\ds \) \(=\) \(\ds \paren {2^{10} - 10^3} \sum_{j \mathop = 0}^{n - 1} \paren {2^{10} }^{n - j - 1} \paren {10^3}^j\) Difference of Two Powers
\(\ds \) \(=\) \(\ds 24 k\) where $\ds k = \sum_{j \mathop = 0}^{n - 1} {2^{10} }^{n - j - 1} \paren {10^3}^j$ is an integer
\(\ds \leadsto \ \ \) \(\ds 2^{10 n} - 10^{3 n}\) \(\equiv\) \(\ds 0 \pmod {24}\) Definition of Congruence Modulo Integer

$\blacksquare$