Powers of 16 Modulo 20/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $n \in \Z_{> 0}$ be a strictly positive integer.

Then:

$16^n \equiv 16 \pmod {20}$


Proof

\(\ds 16\) \(\equiv\) \(\ds 16\) \(\ds \pmod {20}\)
\(\ds \leadsto \ \ \) \(\ds 16\) \(\equiv\) \(\ds 0\) \(\ds \pmod 4\)
\(\, \ds \text {and} \, \) \(\ds 16\) \(\equiv\) \(\ds 1\) \(\ds \pmod 5\)
\(\ds \leadsto \ \ \) \(\ds 16^n\) \(\equiv\) \(\ds 0\) \(\ds \pmod 4\)
\(\, \ds \text {and} \, \) \(\ds 16^n\) \(\equiv\) \(\ds 1\) \(\ds \pmod 5\)
\(\ds \leadsto \ \ \) \(\ds 16^n\) \(\equiv\) \(\ds 16\) \(\ds \pmod {20}\) Chinese Remainder Theorem

$\blacksquare$