Preimage of Intersection under Mapping/Family of Sets/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ and $T$ be sets.

Let $\family {T_i}_{i \mathop \in I}$ be a family of subsets of $T$.

Let $f: S \to T$ be a mapping.


Then:

$\ds f^{-1} \sqbrk {\bigcap_{i \mathop \in I} T_i} = \bigcap_{i \mathop \in I} f^{-1} \sqbrk {T_i}$

where:

$\ds \bigcap_{i \mathop \in I} T_i$ denotes the intersection of $\family {T_i}_{i \mathop \in I}$.
$f^{-1} \sqbrk {T_i}$ denotes the preimage of $T_i$ under $f$.


Proof

\(\ds x\) \(\in\) \(\ds f^{-1} \sqbrk {\bigcap_{i \mathop \in I} T_i}\)
\(\ds \leadstoandfrom \ \ \) \(\ds \map f x\) \(\in\) \(\ds \bigcap_{i \mathop \in I} T_i\)
\(\ds \leadstoandfrom \ \ \) \(\ds \forall i \in I: \, \) \(\ds \map f x\) \(\in\) \(\ds T_i\)
\(\ds \leadstoandfrom \ \ \) \(\ds \forall i \in I: \, \) \(\ds x\) \(\in\) \(\ds f^{-1} \sqbrk {T_i}\)
\(\ds \leadstoandfrom \ \ \) \(\ds x\) \(\in\) \(\ds \bigcap_{i \mathop \in I} f^{-1} \sqbrk {T_i}\)

$\blacksquare$


Sources