Prime Ideal Including Ideal Includes Radical

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $R$ be a commutative ring with unity.

Let $\mathfrak p$ be a prime ideal.

Let $\mathfrak a$ be an ideal of $R$ such that:

$\mathfrak a \subseteq \mathfrak p$

Let $\map \Rad {\mathfrak a}$ be the radical of $\mathfrak a$.


Then:

$\map \Rad {\mathfrak a} \subseteq \mathfrak p$


Proof

Let $x \in \relcomp R {\mathfrak p}$.

By Definition 3 of Prime Ideal:

\(\ds \forall n \in \N_{>0} : \ \ \) \(\ds x^n\) \(\not\in\) \(\ds \mathfrak p\)
\(\ds \leadsto \ \ \) \(\ds x^n\) \(\not\in\) \(\ds \mathfrak a\) since $\mathfrak a \subseteq \mathfrak p$

Therefore, by Definition 2 of Radical:

$x \not\in \map \Rad {\mathfrak a}$

Thus:

$\relcomp R {\mathfrak p} \subseteq \relcomp R {\map \Rad {\mathfrak a} }$

Therefore, by Relative Complement inverts Subsets:

$\map \Rad {\mathfrak a} \subseteq \mathfrak p$

$\blacksquare$