Prime Power of Sum Modulo Prime

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $p$ be a prime number.

Then:

$\forall n \in \N_{> 0}: \paren {a + b}^{p^n} \equiv a^{p^n} + b^{p^n} \pmod p$


Corollary

Let $p$ be a prime number.

Then:

$\forall n \in \N_{> 0}: \paren {1 + b}^{p^n} \equiv 1 + b^{p^n} \pmod p$


Proof

Proof by induction:

For all $n \in \N_{> 0}$, let $\map P n$ be the proposition:

$\paren {a + b}^{p^n} \equiv a^{p^n} + b^{p^n} \pmod p$


Basis for the Induction

First from Power of Sum Modulo Prime we have that $\map P 1$ is true:

$\paren {a + b}^p \equiv a^p + b^p \pmod p$


This is our basis for the induction.


Induction Hypothesis

Now we need to show that, if $\map P k$ is true, where $k \ge 1$, then it logically follows that $\map P {k + 1}$ is true.


So this is our induction hypothesis:

$\paren {a + b}^{p^k} \equiv a^{p^k} + b^{p^k} \pmod p$


Then we need to show:

$\paren {a + b}^{p^{k + 1} } \equiv a^{p^{k + 1} } + b^{p^{k + 1} } \pmod p$


Induction Step

This is our induction step:

\(\ds \paren {a + b}^{p^k}\) \(\equiv\) \(\ds a^{p^k} + b^{p^k}\) \(\ds \pmod p\) Induction Hypothesis
\(\ds \leadsto \ \ \) \(\ds \paren {\paren {a + b}^{p^k} }^p\) \(\equiv\) \(\ds \paren {a^{p^k} + b^{p^k} }^p\) \(\ds \pmod p\) Congruence of Powers
\(\ds \leadsto \ \ \) \(\ds \paren {\paren {a + b}^{p^k} }^p\) \(\equiv\) \(\ds \paren {a^{p^k} }^p + \paren {b^{p^k} }^p\) \(\ds \pmod p\) Basis for the Induction
\(\ds \leadsto \ \ \) \(\ds \paren {a + b}^{p^{k + 1} }\) \(\equiv\) \(\ds a^{p^{k + 1} } + b^{p^{k + 1} }\) \(\ds \pmod p\)


So $\map P k \implies \map P {k + 1}$ and the result follows by the Principle of Mathematical Induction.


Therefore:

$\forall n \in \N_{> 0}: \paren {a + b}^{p^n} \equiv a^{p^n} + b^{p^n} \pmod p$

$\blacksquare$


Also see