Primitive of Arcsecant of x over a over x

From ProofWiki
Jump to navigation Jump to search

Theorem

\(\ds \int \dfrac 1 x \arcsec \frac x a \rd x\) \(=\) \(\ds \frac \pi 2 \ln \size x + \sum_{n \mathop \ge 0} \frac {\paren {2 n}!} {2^{2 n} \paren {n!}^2 \paren {2 n + 1}^2} \paren {\frac a x}^{2 n + 1} + C\)
\(\ds \) \(=\) \(\ds \frac \pi 2 \ln \size x + \frac a x + \frac 1 {2 \times 3 \times 3} \paren {\frac a x}^3 + \frac {1 \times 3} {2 \times 4 \times 5 \times 5} \paren {\frac a x}^5 + \frac {1 \times 3 \times 5} {2 \times 4 \times 6 \times 7 \times 7} \paren {\frac a x}^7 + \cdots + C\)


Proof

\(\ds \arcsec \frac x a\) \(=\) \(\ds \frac \pi 2 - \sum_{n \mathop = 0}^\infty \frac {\paren {2 n}!} {2^{2 n} \paren {n!}^2 \paren {2 n + 1} } \paren {\frac a x}^{2 n + 1}\) Power Series Expansion for Real Arcsecant Function
\(\ds \leadsto \ \ \) \(\ds \frac 1 x \arcsec \frac x a\) \(=\) \(\ds \frac \pi {2 x} - \sum_{n \mathop = 0}^\infty \frac {\paren {2 n}!} {2^{2 n} \paren {n!}^2 \paren {2 n + 1} } a^{2 n + 1} \paren {\frac 1 x}^{2 n + 2}\)
\(\ds \leadsto \ \ \) \(\ds \int \frac 1 x \arcsec \frac x a \rd x\) \(=\) \(\ds \int \paren {\frac \pi {2 x} - \sum_{n \mathop = 0}^\infty \frac {\paren {2 n}!} {2^{2 n} \paren {n!}^2 \paren {2 n + 1} } a^{2 n + 1} \paren {\frac 1 x}^{2 n + 2} } \rd x\)
\(\ds \) \(=\) \(\ds \frac \pi 2 \int \frac {\d x} x - \sum_{n \mathop = 0}^\infty \paren {\int \frac {\paren {2 n}!} {2^{2 n} \paren {n!}^2 \paren {2 n + 1} } a^{2 n + 1} \paren {\frac 1 x}^{2 n + 2} \rd x}\) Fubini's Theorem
\(\ds \) \(=\) \(\ds \frac \pi 2 \ln \size x + \sum_{n \mathop = 0}^\infty {\paren {-\int \frac {\paren {2 n}!} {2^{2 n} \paren {n!}^2 \paren {2 n + 1} } a^{2 n + 1} \paren {\frac 1 x}^{2 n + 2} \rd x} } + C\) Primitive of Reciprocal
\(\ds \) \(=\) \(\ds \frac \pi 2 \ln \size x + \sum_{n \mathop = 0}^\infty \frac {-\paren {2 n}!} {2^{2 n} \paren {n!}^2 \paren {2 n + 1} \paren {-\paren {2 n + 1} } } a^{2 n + 1} \paren {\frac 1 x}^{2 n + 1} + C\) Primitive of Power
\(\ds \) \(=\) \(\ds \frac \pi 2 \ln \size x + \sum_{n \mathop \ge 0} \frac {\paren {2 n}!} {2^{2 n} \paren {n!}^2 \paren {2 n + 1}^2} \paren {\frac a x}^{2 n + 1} + C\) rearranging

$\blacksquare$


Also see


Sources