Primitive of Arcsine of x over a over x

From ProofWiki
Jump to navigation Jump to search

Theorem

\(\ds \int \frac 1 x \arcsin \frac x a \rd x\) \(=\) \(\ds \sum_{n \mathop \ge 0} \frac {\paren {2 n}!} {2^{2 n} \paren {n!}^2 \paren {2 n + 1}^2} \paren {\frac x a}^{2 n + 1}\)
\(\ds \) \(=\) \(\ds \frac x a + \frac 1 {2 \times 3 \times 3} \paren {\frac x a}^3 + \frac {1 \times 3} {2 \times 4 \times 5 \times 5} \paren {\frac x a}^5 + \frac {1 \times 3 \times 5} {2 \times 4 \times 6 \times 7 \times 7} \paren {\frac x a}^7 + \cdots + C\)


Proof

\(\ds \arcsin \frac x a\) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \frac {\paren {2 n}!} {2^{2 n} \paren {n!}^2 \paren {2 n + 1} } \paren {\frac x a}^{2 n + 1}\) Power Series Expansion for Real Arcsine Function
\(\ds \leadsto \ \ \) \(\ds \frac 1 x \arcsin \frac x a\) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \frac {\paren {2 n}!} {2^{2 n} \paren {n!}^2 \paren {2 n + 1} } \paren {\frac 1 a}^{2 n + 1} x^{2 n}\)
\(\ds \leadsto \ \ \) \(\ds \int \frac 1 x \arcsin \frac x a \rd x\) \(=\) \(\ds \int \paren {\sum_{n \mathop = 0}^\infty \frac {\paren {2 n}!} {2^{2 n} \paren {n!}^2 \paren {2 n + 1} } \paren {\frac 1 a}^{2 n + 1} x^{2 n} } \rd x\)
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \paren {\int {\frac {\paren {2 n}!} {2^{2 n} \paren {n!}^2 \paren {2 n + 1} } \paren {\frac 1 a}^{2 n + 1} x^{2 n} } \rd x}\) Power Series is Termwise Integrable within Radius of Convergence
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \frac {\paren {2 n}!} {2^{2 n} \paren {n!}^2 \paren {2 n + 1} } \paren {\frac 1 a}^{2 n + 1} \frac {x^{2 n + 1} } {2 n + 1}\) Primitive of Power
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \frac {\paren {2 n}!} {2^{2 n} \paren {n!}^2 \paren {2 n + 1}^2} \paren {\frac x a}^{2 n + 1}\) rearranging

$\blacksquare$


Also see


Sources