Primitive of Exponential of a x by Cosine of b x
Theorem
- $\ds \int e^{a x} \cos b x \rd x = \frac {e^{a x} \paren {a \cos b x + b \sin b x} } {a^2 + b^2} + C$
Proof 1
\(\ds \int e^{a x} \cos b x \rd x\) | \(=\) | \(\ds \frac {e^{a x} \cos b x} a + \frac b a \int e^{a x} \sin b x \rd x\) | Primitive of $e^{a x} \cos b x$: Lemma | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {e^{a x} \cos b x} a + \frac b a \paren {\frac {e^{a x} \sin b x} a - \frac b a \int e^{a x} \cos b x \rd x}\) | Primitive of $e^{a x} \sin b x$: Lemma | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {e^{a x} a \cos b x + e^{a x} b \sin b x} {a^2} - \frac {b^2} {a^2} \int e^{a x} \cos b x \rd x\) | simplifying | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {1 + \frac {b^2} {a^2} } \int e^{a x} \cos b x \rd x\) | \(=\) | \(\ds \frac {e^{a x} \paren {a \cos b x + b \sin b x} } {a^2}\) | simplifying | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {a^2 + b^2} {a^2} \int e^{a x} \cos b x \rd x\) | \(=\) | \(\ds \frac {e^{a x} \paren {a \cos b x + b \sin b x} } {a^2}\) | common denominator | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int e^{a x} \cos b x \rd x\) | \(=\) | \(\ds \frac {e^{a x} \paren {a \cos b x + b \sin b x} } {a^2 + b^2}\) | multiplying by $\dfrac {a^2} {a^2 + b^2}$ |
$\blacksquare$
Proof 2
\(\ds \int e^{a x} e^{i b x} \rd x\) | \(=\) | \(\ds i \int e^{a x} \sin b x \rd x + \int e^{a x} \cos b x \rd x\) | Euler's Formula | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int e^{a x} \cos b x \rd x\) | \(=\) | \(\ds \map \Re {\int e^{\paren {a + i b} x} \rd x}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \map \Re {\frac {e^{\paren {a + i b} x} } {a + i b} } + C\) | Primitive of Exponential of a x | |||||||||||
\(\ds \) | \(=\) | \(\ds \map \Re {\frac {\paren {a - i b} e^{\paren {a + i b} x} } {a^2 + b^2} } + C\) | multiplying through by $\dfrac {a - i b} {a - i b}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \map \Re {\frac {i a e^{a x} \sin b x + a e^{a x} \cos b x - i b \paren {i e^{a x} \sin b x + e^{a x} \cos b x} } {a^2 + b^2} } + C\) | Euler's Formula | |||||||||||
\(\ds \) | \(=\) | \(\ds \map \Re {\frac {i \paren {a e^{a x} \sin b x - b e^{a x} \cos b x} + \paren {a e^{a x} \cos b x + b e^{a x} \sin b x} } { a^2 + b^2} } + C\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {e^{a x} \paren {a \cos b x + b \sin b x} } {a^2 + b^2} + C\) | isolating real part |
$\blacksquare$
Proof 3
Let $a, b \in \R_{>0}$ be real constants.
Let $f_1$ and $f_2$ be the real functions defined as:
\(\ds \forall x \in \R: \, \) | \(\ds \map {f_1} x\) | \(=\) | \(\ds \map \exp {a x} \map \cos {b x}\) | |||||||||||
\(\ds \map {f_2} x\) | \(=\) | \(\ds \map \exp {a x} \map \sin {b x}\) |
Let $\map \CC \R$ denote the space of continuous real-valued functions.
Let $\struct {\map {\CC^1} \R, +, \, \cdot \,}_\R$ denote the vector space of continuously differentiable real-valued functions.
Let $S = \span \set {f_1, f_2} \subset \map {\CC^1} \R$ be a vector space.
![]() | This article, or a section of it, needs explaining. In particular: $\span \set {f_1, f_2}$ You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by explaining it. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Explain}} from the code. |
Let $D : S \to S$ be the derivative with respect to $x$.
From Differentiation of Exponential of a x by Cosine of b x and Exponential of a x by Sine of b x wrt x as Invertible Matrix, $D$ is expressible as:
- $\mathbf D = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$
and is invertible.
By Inverse of Matrix is Scalar Product of Adjugate by Reciprocal of Determinant:
- $\mathbf D^{-1} = \dfrac 1 {a^2 + b^2} \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$
Then:
\(\ds \mathbf D^{-1} \begin{bmatrix} 1 \\ 0 \end {bmatrix}\) | \(=\) | \(\ds \dfrac 1 {a^2 + b^2} \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 {a^2 + b^2} \begin{bmatrix} a \\ b \end{bmatrix}\) |
Application of $\mathbf D$ on both sides on the left and writing out explicitly in terms of $f_1$ and $f_2$ yields:
- $f_1 = \dfrac \d {\d x} \dfrac {a f_1 + b f_2} {a^2 + b^2}$
Integrating with respect to $x$:
- $\ds \int f_1 \rd x = \frac {a f_1 + b f_2} {a^2 + b^2} + C$
where $C$ is an arbitrary constant.
Substitute definitions of $f_1$ and $f_2$ to get the desired result.
$\blacksquare$
Also see
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $e^{a x}$: $14.519$
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Appendix $7$: Integrals
- 2021: Richard Earl and James Nicholson: The Concise Oxford Dictionary of Mathematics (6th ed.) ... (previous) ... (next): Appendix $8$: Integrals