Primitive of Exponential of a x by Power of Cosine of b x/Lemma 1

From ProofWiki
Jump to navigation Jump to search

Lemma for Primitive of $e^{a x} \cos b x$

$\ds \int e^{a x} \cos^{n - 1} b x \sin b x \rd x = \frac {e^{a x} \cos^{n - 1} b x \paren {a \sin b x - b \cos b x} } {a^2 + n b^2} - \frac {\paren {n - 1} a b} {a^2 + n b^2} \paren {\int e^{a x} \cos^n b x \rd x - \int e^{a x} \cos^{n - 2} b x \rd x} + C$


Proof

With a view to expressing the primitive in the form:

$\ds \int u \frac {\d v} {\d x} \rd x = u v - \int v \frac {\d u} {\d x} \rd x$

let:

\(\ds u\) \(=\) \(\ds \cos^{n - 1} b x\)
\(\ds \leadsto \ \ \) \(\ds \frac {\d u} {\d x}\) \(=\) \(\ds -\paren {n - 1} b \cos^{n - 2} b x \sin b x\) Derivative of $\cos a x$, Derivative of Power, Chain Rule for Derivatives


and let:

\(\ds \frac {\d v} {\d x}\) \(=\) \(\ds e^{a x} \sin b x\)
\(\ds \leadsto \ \ \) \(\ds v\) \(=\) \(\ds \frac {e^{a x} \paren {a \sin b x - b \cos b x} } {a^2 + b^2}\) Primitive of $e^{a x} \sin b x$


Then:

\(\ds \) \(\) \(\ds \int e^{a x} \cos^{n - 1} b x \sin b x \rd x\)
\(\ds \) \(=\) \(\ds \int \paren {\cos^{n - 1} b x} \paren {e^{a x} \sin b x} \rd x\)
\(\ds \) \(=\) \(\ds \paren {\cos^{n - 1} b x} \paren {\frac {e^{a x} \paren {a \sin b x - b \cos b x} } {a^2 + b^2} }\) Integration by Parts
\(\ds \) \(\) \(\, \ds - \, \) \(\ds \int \paren {\frac {e^{a x} \paren {a \sin b x - b \cos b x} } {a^2 + b^2} } \paren {-\paren {n - 1} b \cos^{n - 2} b x \sin b x} \rd x + C\)
\(\ds \) \(=\) \(\ds \frac {e^{a x} \cos^{n - 1} b x \paren {a \sin b x - b \cos b x} } {a^2 + b^2}\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds \frac {\paren {n - 1} a b} {a^2 + b^2} \int e^{a x} \cos^{n - 2} b x \sin^2 b x \rd x + C\) Linear Combination of Primitives
\(\ds \) \(\) \(\, \ds - \, \) \(\ds \frac {\paren {n - 1} b^2} {a^2 + b^2} \int e^{a x} \cos^{n - 1} b x \sin b x \rd x + C\)
\(\ds \leadsto \ \ \) \(\ds \) \(\) \(\ds \paren {1 + \frac {\paren {n - 1} b^2} {a^2 + b^2} } \int e^{a x} \cos^{n - 1} b x \sin b x \rd x\) gathering terms
\(\ds \) \(=\) \(\ds \frac {e^{a x} \cos^{n - 1} b x \paren {a \sin b x - b \cos b x} } {a^2 + b^2}\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds \frac {\paren {n - 1} a b} {a^2 + b^2} \int e^{a x} \cos^{n - 2} b x \sin^2 b x \rd x + C\)
\(\ds \leadsto \ \ \) \(\ds \) \(\) \(\ds \paren {a^2 + n b^2} \int e^{a x} \cos^{n - 1} b x \sin b x \rd x\)
\(\ds \) \(=\) \(\ds e^{a x} \cos^{n - 1} b x \paren {a \sin b x - b \cos b x}\) simplifying
\(\ds \) \(\) \(\, \ds + \, \) \(\ds \paren {n - 1} a b \int e^{a x} \cos^{n - 2} b x \sin^2 b x \rd x + C\)
\(\ds \) \(=\) \(\ds e^{a x} \cos^{n - 1} b x \paren {a \sin b x - b \cos b x}\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds \paren {n - 1} a b \int e^{a x} \cos^{n - 2} b x \paren {1 - \cos^2 b x} \rd x + C\) Sum of Squares of Sine and Cosine
\(\ds \) \(=\) \(\ds e^{a x} \cos^{n - 1} b x \paren {a \sin b x - b \cos b x}\) simplifying
\(\ds \) \(\) \(\, \ds + \, \) \(\ds \paren {n - 1} a b \int e^{a x} \cos^{n - 2} b x \rd x\)
\(\ds \) \(\) \(\, \ds - \, \) \(\ds \paren {n - 1} a b \int e^{a x} \cos^n b x \rd x + C\)
\(\ds \leadsto \ \ \) \(\ds \) \(\) \(\ds \int e^{a x} \cos^{n - 1} b x \sin b x \rd x\)
\(\ds \) \(=\) \(\ds \frac {e^{a x} \cos^{n - 1} b x \paren {a \sin b x - b \cos b x} } {a^2 + n b^2}\) simplifying
\(\ds \) \(\) \(\, \ds + \, \) \(\ds \frac {\paren {n - 1} a b} {a^2 + n b^2} \int e^{a x} \cos^{n - 2} b x \rd x\)
\(\ds \) \(\) \(\, \ds - \, \) \(\ds \frac {\paren {n - 1} a b} {a^2 + n b^2} \int e^{a x} \cos^n b x \rd x + C\)

and so rearranging:

$\ds \int e^{a x} \cos^{n - 1} b x \sin b x \rd x = \frac {e^{a x} \cos^{n - 1} b x \paren {a \sin b x - b \cos b x} } {a^2 + n b^2} - \frac {\paren {n - 1} a b} {a^2 + n b^2} \paren {\int e^{a x} \cos^n b x \rd x - \int e^{a x} \cos^{n - 2} b x \rd x} + C$

$\blacksquare$