Primitive of Exponential of a x by Sine of b x
Theorem
- $\ds \int e^{a x} \sin b x \rd x = \frac {e^{a x} \paren {a \sin b x - b \cos b x} } {a^2 + b^2} + C$
Proof 1
\(\ds \int e^{a x} \sin b x \rd x\) | \(=\) | \(\ds \frac {e^{a x} \sin b x} a - \frac b a \int e^{a x} \cos b x \rd x\) | Primitive of $e^{a x} \sin b x$: Lemma | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {e^{a x} \sin b x} a - \frac b a \paren {\frac {e^{a x} \cos b x} a + \frac b a \int e^{a x} \sin b x \rd x}\) | Primitive of $e^{a x} \cos b x$: Lemma | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {e^{a x} a \sin b x - e^{a x} b \cos b x} {a^2} - \frac {b^2} {a^2} \int e^{a x} \sin b x \rd x\) | simplifying | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {1 + \frac {b^2} {a^2} } \int e^{a x} \sin b x \rd x\) | \(=\) | \(\ds \frac {e^{a x} \left({a \sin b x - b \cos b x}\right)} {a^2}\) | simplifying | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {a^2 + b^2} {a^2} \int e^{a x} \sin b x \rd x\) | \(=\) | \(\ds \frac {e^{a x} \paren {a \sin b x - b \cos b x} } {a^2}\) | common denominator | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int e^{a x} \sin b x \rd x\) | \(=\) | \(\ds \frac {e^{a x} \paren {a \sin b x - b \cos b x} } {a^2 + b^2}\) | multiplying by $\dfrac {a^2} {a^2 + b^2}$ |
$\blacksquare$
Proof 2
\(\ds \cos b x + i \sin b x\) | \(=\) | \(\ds e^{i b x}\) | Euler's Formula | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds e^{a x} \cos b x + i e^{a x} \sin b x\) | \(=\) | \(\ds e^{a x} e^{i b x}\) | multiplying both sides by $e^{a x}$ | ||||||||||
\(\ds \) | \(=\) | \(\ds e^{\paren {a + i b} x}\) | Exponent Combination Laws | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int e^{a x} \cos b x \, \d x + i \int e^{a x} \sin b x \d x\) | \(=\) | \(\ds \int e^{\paren {a + i b} x} \d x\) | Linear Combination of Complex Integrals | ||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {a + i b} e^{\paren {a + i b} x} + C\) | Primitive of $e^{a x}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {a - i b} {a^2 + b^2} e^{\paren {a + i b} x} + C\) | multiplying top and bottom by $a - i b$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {a - i b} {a^2 + b^2} e^{a x} e^{i b x} + C\) | Exponent Combination Laws | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {a - i b} {a^2 + b^2} e^{a x} \paren {\cos b x + i \sin b x} + C\) | Euler's Formula | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac a {a^2 + b^2} e^{a x} \cos b x - \frac {i b} {a^2 + b^2} e^{a x} \cos b x\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \frac {i a} {a^2 + b^2} e^{a x} \sin b x + \frac b {a^2 + b^2} e^{a x} \sin b x + C\) |
The result follows from equating imaginary parts.
$\blacksquare$
Proof 3
\(\ds \int e^{a x} \sin b x \rd x\) | \(=\) | \(\ds \int e^{a x} \paren {\frac {e^{i b x} - e^{-i b x} } {2 i} } \rd x\) | Sine Exponential Formulation | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {2 i} \int e^{a x} \paren {e^{i b x} - e^{-i b x} } \rd x\) | Primitive of Constant Multiple of Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {2 i} \int \paren {e^{a x} e^{i b x} - e^{a x} e^{-i b x} } \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {2 i} \int \paren {e^{a x + i b x} - e^{a x - i b x} } \rd x\) | Product of Powers | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {2 i} \int e^{a x + i b x} \rd x - \frac 1 {2 i} \int e^{a x - i b x} \rd x\) | Linear Combination of Primitives | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {2 i} \int e^{\paren {a + i b} x} \rd x - \frac 1 {2 i} \int e^{\paren {a - i b} x} \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {2 i} \frac {e^{\paren {a + i b} x} } {a + i b} - \frac 1 {2 i} \frac {e^{\paren {a - i b} x} } {a - i b} + C\) | Primitive of $e^{a x}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {2 i} \frac {e^{a x + i b x} } {a + i b} - \frac 1 {2 i} \frac {e^{a x - i b x} } {a - i b} + C\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {2 i} \frac {e^{a x} e^{i b x} } {a + i b} - \frac 1 {2 i} \frac {e^{a x} e^{-i b x} } {a - i b} + C\) | Product of Powers | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {2 i} \frac {e^{a x} e^{i b x} \paren {a - i b} } {\paren {a + i b} \paren {a - i b} } - \frac 1 {2 i} \frac {e^{a x} e^{-i b x} \paren {a + i b} } {\paren {a - i b} \paren {a + i b} } + C\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {e^{a x} e^{i b x} \paren {a - i b} - e^{a x} e^{-i b x} \paren {a + i b} } {2 i \paren {a + i b} \paren {a - i b} } + C\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {e^{a x} e^{i b x} \paren {a - i b} - e^{a x} e^{-i b x} \paren {a + i b} } {2 i \paren {a^2 + b^2} } + C\) | Product of Complex Number with Conjugate | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {a e^{a x} e^{i b x} - i b e^{a x} e^{i b x} - a e^{a x} e^{-i b x} - i b e^{a x} e^{-i b x} } {2 i \paren {a^2 + b^2} } + C\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {e^{a x} } {\paren {a^2 + b^2} } \paren {\frac {a e^{i b x} - i b e^{i b x} - a e^{-i b x} - i b e^{-i b x} } {2 i} } + C\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {e^{a x} } {\paren {a^2 + b^2} } \paren {a \frac {e^{i b x} - e^{-i b x} } {2 i} - b \frac {e^{i b x} + e^{-i b x} } 2} + C\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {e^{a x} } {\paren {a^2 + b^2} } \paren {a \frac {e^{i b x} - e^{-i b x} } {2 i} - b \cos b x} + C\) | Cosine Exponential Formulation | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {e^{a x} } {\paren {a^2 + b^2} } \paren {a \sin b x - b \cos b x} + C\) | Sine Exponential Formulation | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {e^{a x} \paren {a \sin b x - b \cos b x} } {a^2 + b^2} + C\) |
$\blacksquare$
Proof 4
Let $a, b, x \in \R$ be real numbers.
Suppose $a \ne 0 \ne b$.
Denote $\ds f_1 = \map \exp {a x} \map \cos {b x}$, $f_2 = \map \exp {a x} \map \sin {b x}$.
Let $\map \CC \R$ be the space of continuous real-valued functions.
Let $\struct {\map {\CC^1} \R, +, \, \cdot \,}_\R$ be the vector space of continuously differentiable real-valued functions.
Let $S = \span \set {f_1, f_2} \subset \map {\CC^1} \R$ be a vector space.
Let $D : S \to S$ be the derivative with respect to $x$.
From Differentiation of Exponential of a x by Cosine of b x and Exponential of a x by Sine of b x wrt x as Invertible Matrix, $D$ is expressible as:
- $\mathbf D = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$
and is invertible.
By Inverse of Matrix is Scalar Product of Adjugate by Reciprocal of Determinant:
- $\ds \mathbf D^{-1} = \frac 1 {a^2 + b^2} \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$
Then:
- $\ds \mathbf D^{-1} \begin{bmatrix} 0 \\ 1 \end {bmatrix} = \frac 1 {a^2 + b^2} \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac 1 {a^2 + b^2} \begin{bmatrix} -b \\ a \end{bmatrix}$
Application of $\mathbf D$ on both sides on the left and writing out explicitly in terms of $f_1$ and $f_2$ yields:
- $f_2 = \ds \dfrac \d {\d x} \frac {-b f_1 + a f_2} {a^2 + b^2}$
Integrate with respect to $x$:
- $\ds \int f_2 \rd x = \frac {-b f_1 + a f_2} {a^2 + b^2} + C$
where $C$ is an arbitrary constant.
Substitute definitions of $f_1$ and $f_2$ to get the desired result.
$\blacksquare$
Also see
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $e^{a x}$: $14.518$
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Appendix $7$: Integrals
- 2021: Richard Earl and James Nicholson: The Concise Oxford Dictionary of Mathematics (6th ed.) ... (previous) ... (next): Appendix $8$: Integrals