Primitive of Exponential of a x by Sine of b x/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int e^{a x} \sin b x \rd x = \frac {e^{a x} \paren {a \sin b x - b \cos b x} } {a^2 + b^2} + C$


Proof

\(\ds \cos b x + i \sin b x\) \(=\) \(\ds e^{i b x}\) Euler's Formula
\(\ds \leadsto \ \ \) \(\ds e^{a x} \cos b x + i e^{a x} \sin b x\) \(=\) \(\ds e^{a x} e^{i b x}\) multiplying both sides by $e^{a x}$
\(\ds \) \(=\) \(\ds e^{\paren {a + i b} x}\) Exponent Combination Laws
\(\ds \leadsto \ \ \) \(\ds \int e^{a x} \cos b x \, \d x + i \int e^{a x} \sin b x \d x\) \(=\) \(\ds \int e^{\paren {a + i b} x} \d x\) Linear Combination of Complex Integrals
\(\ds \) \(=\) \(\ds \frac 1 {a + i b} e^{\paren {a + i b} x} + C\) Primitive of $e^{a x}$
\(\ds \) \(=\) \(\ds \frac {a - i b} {a^2 + b^2} e^{\paren {a + i b} x} + C\) multiplying top and bottom by $a - i b$
\(\ds \) \(=\) \(\ds \frac {a - i b} {a^2 + b^2} e^{a x} e^{i b x} + C\) Exponent Combination Laws
\(\ds \) \(=\) \(\ds \frac {a - i b} {a^2 + b^2} e^{a x} \paren {\cos b x + i \sin b x} + C\) Euler's Formula
\(\ds \) \(=\) \(\ds \frac a {a^2 + b^2} e^{a x} \cos b x - \frac {i b} {a^2 + b^2} e^{a x} \cos b x\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds \frac {i a} {a^2 + b^2} e^{a x} \sin b x + \frac b {a^2 + b^2} e^{a x} \sin b x + C\)

The result follows from equating imaginary parts.

$\blacksquare$