Primitive of Function of Nth Root of a x + b

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \map F {\sqrt [n] {a x + b} } \rd x = \frac n a \int u^{n - 1} \map F u \rd u$

where $u = \sqrt [n] {a x + b}$.


Proof

\(\ds u\) \(=\) \(\ds \sqrt [n] {a x + b}\)
\(\ds u\) \(=\) \(\ds \paren {a x + b}^{1/n}\)
\(\ds \leadsto \ \ \) \(\ds \frac {\d u} {\d x}\) \(=\) \(\ds \frac 1 {n \paren {\sqrt [n] {a x + b} }^{n - 1} } \map {\frac \d {\d x} } {a x + b}\) Chain Rule for Derivatives, Derivative of Nth Root
\(\ds \) \(=\) \(\ds \frac 1 {n u^{n - 1} } \map {\frac \d {\d x} } {a x + b}\) substituting for $u$
\(\ds \) \(=\) \(\ds \frac a {n u^{n - 1} }\) Derivative of Function of Constant Multiple: Corollary
\(\ds \leadsto \ \ \) \(\ds \int \map F {\sqrt [n] {a x + b} } \rd x\) \(=\) \(\ds \int \frac {n u^{n - 1} } a \map F u \rd u\) Primitive of Composite Function
\(\ds \) \(=\) \(\ds \frac n a \int u^{n - 1} \map F u \rd u\) Primitive of Constant Multiple of Function

$\blacksquare$


Sources