Primitive of Hyperbolic Cosecant Function/Inverse Hyperbolic Cotangent Form

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \csch x \rd x = -2 \map {\coth^{-1} } {e^x} + C$


Proof

Let:

\(\ds \int \csch x \rd x\) \(=\) \(\ds \int \frac 2 {e^x - e^{-x} } \rd x\) Definition of Hyperbolic Cosecant
\(\ds \) \(=\) \(\ds \int \frac {2 e^x} {e^{2 x} - 1} \rd x\) multiplying top and bottom by $e^x$

Let:

\(\ds u\) \(=\) \(\ds e^x\)
\(\ds \leadsto \ \ \) \(\ds u'\) \(=\) \(\ds e^x\) Derivative of Exponential Function


Then:

\(\ds \int \csch x \rd x\) \(=\) \(\ds \int \frac {2 \rd u} {u^2 - 1}\) Integration by Substitution
\(\ds \) \(=\) \(\ds -2 \coth^{-1} u + C\) Primitive of Reciprocal of $x^2 - a^2$: $\coth^{-1}$ form
\(\ds \) \(=\) \(\ds -2 \map {\coth^{-1} } {e^x} + C\) Definition of $u$

$\blacksquare$


Also see


Sources

(in which a mistake apppears)