Primitive of Hyperbolic Secant Function/Arctangent of Hyperbolic Sine Form

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \sech x \rd x = \map \arctan {\sinh x} + C$


Proof

We have that:

\(\ds \int \sech x \rd x\) \(=\) \(\ds \int \frac {\d x} {\cosh x}\) Definition 2 of Hyperbolic Secant
\(\ds \) \(=\) \(\ds \int \frac {\cosh x \rd x} {\cosh^2 x}\) multiplying top and bottom by $\cosh x$
\(\ds \) \(=\) \(\ds \int \frac {\cosh x \rd x} {1 + \sinh^2 x}\) Difference of Squares of Hyperbolic Cosine and Sine


Let:

\(\ds u\) \(=\) \(\ds \sinh x\)
\(\ds \leadsto \ \ \) \(\ds \frac {\d u} {\d x}\) \(=\) \(\ds \cosh x\) Derivative of Hyperbolic Sine


Then:

\(\ds \int \sech x \rd x\) \(=\) \(\ds \int \frac {\d u} {u^2 + 1}\) Integration by Substitution
\(\ds \) \(=\) \(\ds \arctan u + C\) Primitive of $\dfrac 1 {x^2 + a^2}$: Arctangent Form
\(\ds \) \(=\) \(\ds \map \arctan {\sinh x} + C\) substituting for $u$

$\blacksquare$


Sources