Primitive of Hyperbolic Sine of p x by Hyperbolic Cosine of q x

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \sinh p x \cosh q x \rd x = \frac {\map \cosh {p + q} x} {2 \paren {p + q} } + \frac {\map \cosh {p - q} x} {2 \paren {p - q} } + C$


Proof

\(\ds \int \sinh p x \cosh q x \rd x\) \(=\) \(\ds \int \paren {\frac {\map \sinh {p x + q x} + \map \sinh {p x - q x} } 2} \rd x\) Werner Formula for Hyperbolic Sine by Hyperbolic Cosine
\(\ds \) \(=\) \(\ds \frac 1 2 \int \map \sinh {p + q} x \rd x + \frac 1 2 \int \map \sinh {p - q} x \rd x\) Linear Combination of Primitives
\(\ds \) \(=\) \(\ds \frac 1 2 \frac {\map \cosh {p + q} x} {p + q} + \frac 1 2 \frac {\map \cosh {p - q} x} {p - q} + C\) Primitive of $\sinh a x$
\(\ds \) \(=\) \(\ds \frac {\map \cosh {p + q} x} {2 \paren {p + q} } + \frac {\map \cosh {p - q} x} {2 \paren {p - q} } + C\) simplifying

$\blacksquare$


Also see


Sources