Primitive of Inverse Hyperbolic Cosecant of x over a

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \arcsch \frac x a \rd x = \begin {cases}

x \arcsch \dfrac x a + a \arsinh \dfrac x a + C & : x > 0 \\ x \arcsch \dfrac x a - a \arsinh \dfrac x a + C & : x < 0 \end {cases}$


Proof

With a view to expressing the primitive in the form:

$\ds \int u \frac {\d v} {\d x} \rd x = u v - \int v \frac {\d u} {\d x} \rd x$

let:

\(\ds u\) \(=\) \(\ds \arcsch \frac x a\)
\(\ds \leadsto \ \ \) \(\ds \frac {\d u} {\d x}\) \(=\) \(\ds \frac {-a} {\size x \sqrt {a^2 + x^2} }\) Derivative of $\arcsch \dfrac x a$


and let:

\(\ds \frac {\d v} {\d x}\) \(=\) \(\ds 1\)
\(\ds \leadsto \ \ \) \(\ds v\) \(=\) \(\ds x\) Primitive of Constant


Then:

\(\ds \int \arcsch \frac x a \rd x\) \(=\) \(\ds x \arcsch \frac x a - \int x \paren {\frac {-a} {\size x \sqrt {a^2 + x^2} } } \rd x + C\) Integration by Parts
\(\ds \) \(=\) \(\ds x \arcsch \frac x a + a \int \frac {x \rd x} {\size x \sqrt {a^2 + x^2} } + C\) Primitive of Constant Multiple of Function
\(\ds \) \(=\) \(\ds x \arcsch \frac x a \begin {cases} \mathop + a \ds \int \dfrac {\d x} {\sqrt {a^2 + x^2} } + C & : x > 0 \\ \mathop - a \ds \int \dfrac {\d x} {\sqrt {a^2 + x^2} } + C & : x < 0 \end {cases}\) Definition of Absolute Value
\(\ds \) \(=\) \(\ds \begin {cases} x \arcsch \dfrac x a + a \arsinh \dfrac x a + C & : x > 0 \\ x \arcsch \dfrac x a - a \arsinh \dfrac x a + C & : x < 0 \end {cases}\) Primitive of $\dfrac 1 {\sqrt {a^2 + x^2} }$

$\blacksquare$


Also see


Sources