Primitive of Inverse Hyperbolic Tangent of x over a over x

From ProofWiki
Jump to navigation Jump to search

Theorem

\(\ds \int \dfrac 1 x \artanh \dfrac x a \rd x\) \(=\) \(\ds \sum_{k \mathop \ge 0} \frac 1 {\paren {2 k + 1}^2} \paren {\frac x a}^{2 k + 1}\)
\(\ds \) \(=\) \(\ds \frac x a + \frac {\paren {x / a}^3} {3^2} + \frac {\paren {x / a}^5} {5^2} + \frac {\paren {x / a}^7} {7^2} + \cdots\)


Proof

\(\ds \artanh \dfrac x a\) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \frac 1 {2 n + 1} \paren {\frac x a}^{2 n + 1}\) Power Series Expansion for Real Area Hyperbolic Tangent
\(\ds \leadsto \ \ \) \(\ds \frac 1 x \artanh \dfrac x a\) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \frac 1 {2 n + 1} \frac 1 {a^{2 n + 1} } x^{2 n}\)
\(\ds \leadsto \ \ \) \(\ds \int \frac 1 x \artanh \dfrac x a \rd x\) \(=\) \(\ds \int \paren {\sum_{n \mathop = 0}^\infty \frac 1 {2 n + 1} \frac 1 {a^{2 n + 1} } x^{2 n} } \rd x\)
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \int \paren {\frac 1 {2 n + 1} \frac 1 {a^{2 n + 1} } x^{2 n} \rd x}\) Fubini's Theorem
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \frac 1 {2 n + 1} \frac 1 {a^{2 n + 1} } \frac {x^{2 n + 1} } {2 n + 1} + C\) Primitive of Power
\(\ds \) \(=\) \(\ds \sum_{k \mathop \ge 0} \frac 1 {\paren {2 k + 1}^2} \paren {\frac x a}^{2 k + 1} + C\) rearranging

$\blacksquare$


Also see


Sources