Primitive of Logarithm of x/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \ln x \rd x = x \ln x - x + C$


Proof

Note that we have:

\(\ds \int_0^1 \ln x \rd x\) \(=\) \(\ds \int_0^1 x^0 \paren {\ln x}^1 \rd x\)
\(\ds \) \(=\) \(\ds \frac {\paren {-1}^1 \map \Gamma 2} {1^2}\) Definite Integral from $0$ to $1$ of $x^m \paren {\ln x}^n$
\(\ds \) \(=\) \(\ds -1\) Gamma Function Extends Factorial

We therefore have:

\(\ds -1\) \(=\) \(\ds \int_0^1 \ln x \rd x\)
\(\ds \) \(=\) \(\ds \frac 1 a \int_0^a \map \ln {\frac u a} \rd u\) substituting $x = \dfrac u a$ where $a > 0$
\(\ds \) \(=\) \(\ds \frac 1 a \int_0^a \paren {\ln u - \ln a} \rd u\) Difference of Logarithms
\(\ds \) \(=\) \(\ds \frac 1 a \int_0^a \ln u \rd u - \ln a\) Primitive of Constant, Fundamental Theorem of Calculus

giving:

$\ds \frac 1 a \int_0^a \ln u \rd u = \ln a - 1$

so:

$\ds \int_0^a \ln u \rd u = a \ln a - a$

for all real $a > 0$.

By Fundamental Theorem of Calculus: First Part, we have that:

$x \ln x - x$ is a primitive of $\ln x$ on $x > 0$.

We therefore conclude that, by Primitives which Differ by Constant:

$\ds \int \ln x \rd x = x \ln x - x + C$

for $x > 0$.

$\blacksquare$