Primitive of Logarithm of x over x/Corollary
Jump to navigation
Jump to search
Corollary to Primitive of $\dfrac {\ln x} x$
- $\ds \int \frac {\ln a x} x \rd x = \frac {\map {\ln^2} {a x} } 2 + C$
Proof
Let $z = a x$.
\(\ds z\) | \(=\) | \(\ds a x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \d z\) | \(=\) | \(\ds a \rd x\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int \frac {\ln a x} x \rd x\) | \(=\) | \(\ds \int \frac {\ln z} {z / a} \dfrac {\rd z} a\) | Integration by Substitution: $z = a x$ | ||||||||||
\(\ds \) | \(=\) | \(\ds \int \frac {\ln z \rd z} z\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\ln^2 z} 2 + C\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\map {\ln^2} {a x} } 2 + C\) |
$\blacksquare$