Primitive of Power of Hyperbolic Tangent of a x

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \tanh^n a x \rd x = \frac {-\tanh^{n - 1} a x} {a \paren {n - 1} } + \int \tanh^{n - 2} a x \rd x + C$


Proof

\(\ds \int \tanh^n a x \rd x\) \(=\) \(\ds \int \tanh^{n - 2} a x \tanh^2 a x \rd x\)
\(\ds \) \(=\) \(\ds \int \tanh^{n - 2} a x \paren {1 - \sech^2 a x} \rd x\) Sum of Squares of Hyperbolic Secant and Tangent
\(\ds \) \(=\) \(\ds -\int \tanh^{n - 2} a x \sech^2 a x \rd x + \int \tanh^{n - 2} \rd x\) Linear Combination of Primitives
\(\ds \) \(=\) \(\ds \frac {-\tanh^{n - 1} a x} {a \paren {n - 1} } + \int \tanh^{n - 2} a x \rd x + C\) Primitive of $\tanh^n a x \sech^2 a x$

$\blacksquare$


Also see


Sources