Primitive of Power of x by Inverse Hyperbolic Tangent of x over a

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int x^m \artanh \frac x a \rd x = \frac {x^{m + 1} } {m + 1} \artanh \frac x a - \frac a {m + 1} \int \frac {x^{m + 1} } {a^2 - x^2} \rd x + C$


Proof

With a view to expressing the primitive in the form:

$\ds \int u \frac {\d v} {\d x} \rd x = u v - \int v \frac {\d u} {\d x} \rd x$

let:

\(\ds u\) \(=\) \(\ds \artanh \frac x a\)
\(\ds \leadsto \ \ \) \(\ds \frac {\d u} {\d x}\) \(=\) \(\ds \frac a {a^2 - x^2}\) Derivative of $\artanh \dfrac x a$


and let:

\(\ds \frac {\d v} {\d x}\) \(=\) \(\ds x^m\)
\(\ds \leadsto \ \ \) \(\ds v\) \(=\) \(\ds \frac {x^{m + 1} } {m + 1}\) Primitive of Power


Then:

\(\ds \int \frac {\artanh \dfrac x a \rd x} {x^2}\) \(=\) \(\ds \paren {\artanh \frac x a} \paren {\frac {x^{m + 1} } {m + 1} } - \int \paren {\frac {x^{m + 1} } {m + 1} } \paren {\frac a {a^2 - x^2} } \rd x + C\) Integration by Parts
\(\ds \) \(=\) \(\ds \frac {x^{m + 1} } {m + 1} \artanh \frac x a - \frac a {m + 1} \int \frac {x^{m + 1} } {a^2 - x^2} \rd x + C\) simplifying

$\blacksquare$


Also see


Sources