Primitive of Power of x over Power of x squared minus a squared

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {x^m \rd x} {\paren {x^2 - a^2}^n} = \int \frac {x^{m - 2} \rd x} {\paren {x^2 - a^2}^{n - 1} } + a^2 \int \frac {x^{m - 2} \rd x} {\paren {x^2 - a^2}^n}$

for $x^2 > a^2$.


Proof

\(\ds \int \frac {x^m \rd x} {\paren {x^2 - a^2}^n}\) \(=\) \(\ds \int \frac {x^{m - 2} \paren {x^2} \rd x} {\paren {x^2 - a^2}^n}\)
\(\ds \) \(=\) \(\ds \int \frac {x^{m - 2} \paren {x^2 - a^2 + a^2} \rd x} {\paren {x^2 - a^2}^n}\)
\(\ds \) \(=\) \(\ds \int \frac {x^{m - 2} \paren {x^2 - a^2} \rd x} {\paren {x^2 - a^2}^n} + a^2 \int \frac {x^{m - 2} \rd x} {\paren {x^2 - a^2}^n}\) Linear Combination of Primitives
\(\ds \) \(=\) \(\ds \int \frac {x^{m - 2} \rd x} {\paren {x^2 - a^2}^{n - 1} } + a^2 \int \frac {x^{m - 2} \rd x} {\paren {x^2 - a^2}^n}\) simplifying

$\blacksquare$


Also see


Sources