Primitive of Power of x over x cubed plus a cubed

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {x^m \rd x} {x^3 + a^3} = \frac {x^{m - 2} } {m - 2} - a^3 \int \frac {x^{m - 3} \rd x} {x^3 + a^3}$


Proof

\(\ds \int \frac {x^m \rd x} {x^3 + a^3}\) \(=\) \(\ds \int \frac {x^{m - 3} \paren {x^3} \rd x} {x^3 + a^3}\)
\(\ds \) \(=\) \(\ds \int \frac {x^{m - 3} \paren {x^3 + a^3 - a^3} \rd x} {x^3 + a^3}\)
\(\ds \) \(=\) \(\ds \int \frac {x^{m - 3} \paren {x^3 + a^3} \rd x} {x^3 + a^3} - a^3 \int \frac {x^{m - 3} \rd x} {x^3 + a^3}\) Linear Combination of Primitives
\(\ds \) \(=\) \(\ds \int x^{m - 3} \rd x - a^3 \int \frac {x^{m - 3} \rd x} {x^3 + a^3}\) simplification
\(\ds \) \(=\) \(\ds \frac {x^{m - 2} } {m - 2} - a^3 \int \frac {x^{m - 3} \rd x} {x^3 + a^3}\) Primitive of Power

$\blacksquare$


Sources