Primitive of Reciprocal of Power of Cosine of a x by Power of Sine of a x/Reduction of Power of Cosine

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {\d x} {\sin^m a x \cos^n a x} = \frac 1 {a \paren {n - 1} \sin^{m - 1} a x \cos^{n - 1} a x} + \frac {m + n - 2} {n - 1} \int \frac {\d x} {\sin^m a x \cos^{n - 2} a x}$


Proof

\(\ds \int \frac {\d x} {\sin^m a x \cos^n a x}\) \(=\) \(\ds \int \frac {\sin^{-m} a x \rd x} {\cos^n a x}\)
\(\ds \) \(=\) \(\ds \frac {\sin^{-m + 1} a x} {a \paren {n - 1} \cos^{n - 1} a x} - \frac {-m - n + 2} {n - 1} \int \frac {\sin^{-m} a x} {\cos^{n - 2} a x} \rd x + C\) Primitive of $\dfrac {\sin^m a x} {\cos^n a x}$
\(\ds \) \(=\) \(\ds \frac 1 {a \paren {n - 1} \sin^{m - 1} a x \cos^{n - 1} a x} + \frac {m + n - 2} {n - 1} \int \frac {\d x} {\sin^m a x \cos^{n - 2} a x} + C\)

$\blacksquare$


Also see


Sources