Primitive of Reciprocal of Power of x by Power of a x squared plus b x plus c

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a \in \R_{\ne 0}$.

Then:

\(\ds \int \frac {\d x} {x^m \paren {a x^2 + b x + c}^n}\) \(=\) \(\ds \frac {-1} {\paren {m - 1} c x^{m - 1} \paren {a x^2 + b x + c}^{n - 1} }\)
\(\ds \) \(\) \(\, \ds - \, \) \(\ds \frac {\paren {m + 2 n - 3} a} {\paren {m - 1} c} \int \frac {\d x} {x^{m - 2} \paren {a x^2 + b x + c}^n}\)
\(\ds \) \(\) \(\, \ds - \, \) \(\ds \frac {\paren {m - n + 2} b} {\paren {m - 1} c} \int \frac {\d x} {x^{m - 1} \paren {a x^2 + b x + c}^n}\)


Proof

First:

\(\ds \) \(\) \(\ds \int \frac {\d x} {x^m \paren {a x^2 + b x + c}^n}\)
\(\ds \) \(=\) \(\ds \int \frac {c \rd x} {c x^m \paren {a x^2 + b x + c}^n}\) multiplying top and bottom by $c$
\(\ds \) \(=\) \(\ds \frac 1 c \int \frac {c \rd x} {x^m \paren {a x^2 + b x + c}^n}\) Primitive of Constant Multiple of Function
\(\ds \) \(=\) \(\ds \frac 1 c \int \frac {a x^2 + b x + c - a x^2 - b x} {x^m \paren {a x^2 + b x + c}^n} \rd x\) adding and subtracting $a x^2 + b x$
\(\ds \) \(=\) \(\ds \frac 1 c \int \frac {\paren {a x^2 + b x + c} \rd x} {x^m \paren {a x^2 + b x + c}^n} - \frac a c \int \frac {x^2 \rd x} {x^m \paren {a x^2 + b x + c}^n}\) Linear Combination of Primitives
\(\ds \) \(\) \(\, \ds - \, \) \(\ds \frac b c \int \frac {x \rd x} {x^m \paren {a x^2 + b x + c}^n}\)
\(\text {(1)}: \quad\) \(\ds \) \(=\) \(\ds \frac 1 c \int \frac {\d x} {x^m \paren {a x^2 + b x + c}^{n - 1} } - \frac a c \int \frac {\d x} {x^{m - 2} \paren {a x^2 + b x + c}^n}\) simplification
\(\ds \) \(\) \(\, \ds - \, \) \(\ds \frac b c \int \frac {\d x} {x^{m - 1} \paren {a x^2 + b x + c}^n}\)


Next, with a view to obtaining an expression in the form:

$\ds \int u \frac {\d v} {\d x} \rd x = u v - \int v \frac {\d u} {\d x} \rd x$

let:

\(\ds u\) \(=\) \(\ds \frac 1 {\paren {a x^2 + b x + c}^{n - 1} }\)
\(\ds \) \(=\) \(\ds \paren {a x^2 + b x + c}^{-\paren {n - 1} }\)
\(\ds \leadsto \ \ \) \(\ds \frac {\d u} {\d x}\) \(=\) \(\ds -\paren {n - 1} \paren {a x^2 + b x + c}^{-\paren {n - 1} - 1} \paren {2 a x + b}\) Chain Rule for Derivatives and Derivative of Power
\(\ds \) \(=\) \(\ds \frac {-\paren {n - 1} \paren {2 a x + b} } {\paren {a x^2 + b x + c}^n}\) simplifying


and let:

\(\ds \frac {\d v} {\d x}\) \(=\) \(\ds \frac 1 {x^m}\)
\(\ds \) \(=\) \(\ds x^-m\)
\(\ds \leadsto \ \ \) \(\ds v\) \(=\) \(\ds \frac {x^{-m + 1} } {-m + 1}\) Primitive of Power
\(\ds \) \(=\) \(\ds \frac {-1} {\paren {m - 1} x^{m - 1} }\) simplifying


Then:

\(\ds \int \frac {\d x} {x^m \paren {a x^2 + b x + c}^{n - 1} }\) \(=\) \(\ds \int \frac 1 {\paren {a x^2 + b x + c}^{n - 1} } \frac 1 {x^m} \rd x\) Note the index is $n - 1$
\(\ds \) \(=\) \(\ds \frac 1 {\paren {a x^2 + b x + c}^{n - 1} } \frac {-1} {\paren {m - 1} x^{m - 1} }\) Integration by Parts
\(\ds \) \(\) \(\, \ds - \, \) \(\ds \int \frac {-1} {\paren {m - 1} x^{m - 1} } \frac {-\paren {n - 1} \paren {2 a x + b} } {\paren {a x^2 + b x + c}^n} \rd x\)
\(\text {(2)}: \quad\) \(\ds \) \(=\) \(\ds \frac {-1} {\paren {m - 1} x^{m - 1} \paren {a x^2 + b x + c}^{n - 1} }\) simplification
\(\ds \) \(\) \(\, \ds - \, \) \(\ds \frac {2 a \paren {n - 1} } {m - 1} \int \frac {\d x} {x^{m - 2} \paren {a x^2 + b x + c}^n}\) and Linear Combination of Primitives
\(\ds \) \(\) \(\, \ds - \, \) \(\ds \frac {b \paren {n - 1} } {m - 1} \int \frac {\d x} {x^{m - 1} \paren {a x^2 + b x + c}^n}\)


Thus:

\(\ds \) \(\) \(\ds \int \frac {\d x} {x^m \paren {a x^2 + b x + c}^n}\)
\(\ds \) \(=\) \(\ds \frac 1 c \int \frac {\d x} {x^m \paren {a x^2 + b x + c}^{n - 1} } - \frac a c \int \frac {\d x} {x^{m - 2} \paren {a x^2 + b x + c}^n} - \frac b c \int \frac {\d x} {x^{m - 1} \paren {a x^2 + b x + c}^n}\) $(1)$
\(\ds \) \(=\) \(\ds \frac 1 c \paren {\frac {-1} {\paren {m - 1} x^{m - 1} \paren {a x^2 + b x + c}^{n - 1} } - \frac {2 a \paren {n - 1} } {m - 1} \int \frac {\d x} {x^{m - 2} \paren {a x^2 + b x + c}^n} - \frac {b \paren {n - 1} } {m - 1} \int \frac {\d x} {x^{m - 1} \paren {a x^2 + b x + c}^n} }\) $(2)$
\(\ds \) \(\) \(\, \ds - \, \) \(\ds \frac a c \int \frac {\d x} {x^{m - 2} \paren {a x^2 + b x + c}^n} - \frac b c \int \frac {\d x} {x^{m - 1} \paren {a x^2 + b x + c}^n}\)
\(\ds \) \(=\) \(\ds \frac {-1} {c \paren {m - 1} x^{m - 1} \paren {a x^2 + b x + c}^{n - 1} } - \frac {2 a \paren {n - 1} } {c \paren {m - 1} } \int \frac {\d x} {x^{m - 2} \paren {a x^2 + b x + c}^n} - \frac {b \paren {n - 1} } {c \paren {m - 1} } \int \frac {\d x} {x^{m - 1} \paren {a x^2 + b x + c}^n}\)
\(\ds \) \(\) \(\, \ds - \, \) \(\ds \frac a c \int \frac {\d x} {x^{m - 2} \paren {a x^2 + b x + c}^n} - \frac b c \int \frac {\d x} {x^{m - 1} \paren {a x^2 + b x + c}^n}\)
\(\ds \) \(=\) \(\ds \frac {-1} {\paren {m - 1} c x^{m - 1} \paren {a x^2 + b x + c}^{n - 1} } - \frac {\paren {m + 2 n - 3} a} {\paren {m - 1} c} \int \frac {\d x} {x^{m - 2} \paren {a x^2 + b x + c}^n} - \frac {\paren {m - n + 2} b} {\paren {m - 1} c} \int \frac {\d x} {x^{m - 1} \paren {a x^2 + b x + c}^n}\)

$\blacksquare$


Sources