Primitive of Reciprocal of Root of x squared plus a squared/Logarithm Form
Jump to navigation
Jump to search
Theorem
- $\ds \int \frac {\d x} {\sqrt {x^2 + a^2} } = \map \ln {x + \sqrt {x^2 + a^2} } + C$
Corollary
- $\ds \int \frac {\d x} {-\sqrt {x^2 + a^2} } = \ln \size {x - \sqrt {x^2 + a^2} } + C$
Proof 1
\(\ds \int \frac {\d x} {\sqrt {x^2 + a^2} }\) | \(=\) | \(\ds \arsinh {\frac x a} + C\) | Primitive of $\dfrac 1 {\sqrt {x^2 + a^2} }$ in $\arsinh$ form | |||||||||||
\(\ds \) | \(=\) | \(\ds \map \ln {x + \sqrt {x^2 + a^2} } - \ln a + C\) | $\arsinh \dfrac x a$ in Logarithm Form | |||||||||||
\(\ds \) | \(=\) | \(\ds \map \ln {x + \sqrt {x^2 + a^2} } + C\) | subsuming $-\ln a$ into arbitrary constant |
$\blacksquare$
Proof 2
Let $y^2 = a^2 + x^2$.
Then:
\(\ds 2 y \frac {\d y} {\d x}\) | \(=\) | \(\ds 2 x\) | Power Rule for Derivatives, Chain Rule for Derivatives | |||||||||||||
\(\ds \leadsto \ \ \) | \(\ds y \frac {\d y} {\d x}\) | \(=\) | \(\ds x\) | simplification | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d y} x\) | \(=\) | \(\ds \frac {\d x} y\) | |||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\d x + \d y} {x + y}\) |
|
|||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int \frac {\d x} {\sqrt {x^2 + a^2} }\) | \(=\) | \(\ds \int \frac {\d x} y\) | substituting for $y$ | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\d x + \d y} {x + y}\) | from above | |||||||||||||
\(\ds \) | \(=\) | \(\ds \ln \size {x + y} + C\) | Primitive of Function under its Derivative | |||||||||||||
\(\ds \) | \(=\) | \(\ds \ln \size {x + \sqrt {x^2 + a^2} } + C\) | substituting back | |||||||||||||
\(\ds \) | \(=\) | \(\ds \map \ln {x + \sqrt {x^2 + a^2} } + C\) | argument of $\ln$ always positive |
$\blacksquare$
Also presented as
Some sources present this in the form:
- $\ds \int \frac {\d x} {\sqrt {x^2 + a^2} } = \map \ln {\dfrac {x + \sqrt {x^2 + a^2} } a} + C$
which is the same as above, except that the constant $a$ has not been subsumed into the arbitrary constant $C$.
Also see
- Primitive of $\dfrac 1 {\sqrt {x^2 - a^2} }$: Logarithm Form
- Primitive of $\dfrac 1 {\sqrt {a^2 - x^2} }$
Sources
- 1944: R.P. Gillespie: Integration (2nd ed.) ... (previous) ... (next): Chapter $\text {II}$: Integration of Elementary Functions: $\S 7$. Standard Integrals: $14$.
- 1953: L. Harwood Clarke: A Note Book in Pure Mathematics ... (previous) ... (next): $\text {II}$. Calculus: Integration
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of Mathematical Functions ... (previous) ... (next): $3$: Elementary Analytic Methods: $3.3$ Rules for Differentiation and Integration: Integrals of Irrational Algebraic Functions: $3.3.40$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: General Rules of Integration: $14.43$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $\sqrt {x^2 + a^2}$: $14.182$
- 1972: Frank Ayres, Jr. and J.C. Ault: Theory and Problems of Differential and Integral Calculus (SI ed.) ... (previous) ... (next): Chapter $25$: Fundamental Integration Formulas: $23$.
- 1974: Murray R. Spiegel: Theory and Problems of Advanced Calculus (SI ed.) ... (previous) ... (next): Chapter $5$. Integrals: Integrals of Special Functions: $26$
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Appendix $7$: Integrals
- 2021: Richard Earl and James Nicholson: The Concise Oxford Dictionary of Mathematics (6th ed.) ... (previous) ... (next): Appendix $8$: Integrals