Primitive of Reciprocal of q plus p by Hyperbolic Secant of a x

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {\d x} {q + p \sech a x} = \frac x q - \frac p q \int \frac {\d x} {p + q \cosh a x} + C$


Proof

\(\ds \int \frac {\d x} {q + p \sech a x}\) \(=\) \(\ds \frac 1 q \int \frac {q \rd x} {q + p \sech a x}\) multiplying top and bottom by $q$
\(\ds \) \(=\) \(\ds \frac 1 q \int \frac {\paren {q + p \sech a x - p \sech a x} \rd x} {q + p \sech a x}\)
\(\ds \) \(=\) \(\ds \frac 1 q \int \frac {\paren {q + p \sech a x} \rd x} {q + p \sech a x} - \frac p q \int \frac {\sech a x \rd x} {q + p \sech a x}\) Linear Combination of Primitives
\(\ds \) \(=\) \(\ds \frac 1 q \int \d x - \frac p q \int \frac {\sech a x \rd x} {q + p \sech a x}\) simplifying
\(\ds \) \(=\) \(\ds \frac x q - \frac p q \int \frac {\sech a x \rd x} {q + p \sech a x} + C\) Primitive of Constant
\(\ds \) \(=\) \(\ds \frac x q - \frac p q \int \frac {\d x} {\frac q {\sech a x} + p} + C\) multiplying top and bottom by $\dfrac 1 {\sech a x}$
\(\ds \) \(=\) \(\ds \frac x q - \frac p q \int \frac {\d x} {p + q \cosh a x} + C\) Definition 2 of Hyperbolic Secant

$\blacksquare$


Also see


Sources