Primitive of Reciprocal of square of p plus q by Sine of a x/Weierstrass Substitution

From ProofWiki
Jump to navigation Jump to search

Lemma for Primitive of Reciprocal of $\paren {p + q \sin a x}^2$

The Weierstrass Substitution for $\ds \int \frac {\d x} {\paren {p + q \sin a x}^2}$ yields:

$\ds \frac 2 a \int \frac {\paren {u^2 + 1} \rd u} {\paren {p u^2 + 2 q u + p}^2}$

where $u = \tan \dfrac {a x} 2$.


Proof

\(\ds \int \frac {\d x} {\paren {p + q \sin a x}^2}\) \(=\) \(\ds \frac 1 a \int \frac {\d z} {\paren {p + q \sin z}^2}\) Primitive of Function of Constant Multiple: $z = a x$
\(\ds \) \(=\) \(\ds \frac 1 a \int \frac 1 {\paren {p + q \frac {2 u} {u^2 + 1} }^2} \frac {2 \rd u} {u^2 + 1}\) Weierstrass Substitution: $u = \tan \dfrac z 2 = \tan \dfrac {a x} 2$
\(\ds \) \(=\) \(\ds \frac 1 a \int \frac {2 \rd u} {\paren {u^2 + 1} \paren {\frac {p \paren {u^2 + 1} + 2 q u} {u^2 + 1} }^2}\) common denominator
\(\ds \) \(=\) \(\ds \frac 2 a \int \frac {\paren {u^2 + 1} \rd u} {\paren {p u^2 + 2 q u + p}^2}\) simplifying

$\blacksquare$