Primitive of Reciprocal of x by a x + b/Partial Fraction Expansion

From ProofWiki
Jump to navigation Jump to search

Lemma for Primitive of $\dfrac 1 {x \paren {a x + b} }$

$\dfrac 1 {x \paren {a x + b} } \equiv \dfrac 1 {b x} - \dfrac a {b \paren {a x + b} }$


Proof

\(\ds \dfrac 1 {x \paren {a x + b} }\) \(\equiv\) \(\ds \dfrac A x + \dfrac B {a x + b}\)
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds 1\) \(\equiv\) \(\ds A \paren {a x + b} + B x\) multiplying through by $x \paren {a x + b}$
\(\ds \) \(\equiv\) \(\ds A a x + A b + B x\) multiplying out


Setting $a x + b = 0$ in $(1)$:

\(\ds a x + b\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds -\frac b a\)
\(\ds \leadsto \ \ \) \(\ds B \paren {-\frac b a}\) \(=\) \(\ds 1\) substituting for $x$ in $(1)$: terms in $a x + b$ are all $0$
\(\ds \leadsto \ \ \) \(\ds B\) \(=\) \(\ds -\frac a b\)


Equating constants in $(1)$:

\(\ds 1\) \(=\) \(\ds A b\)
\(\ds \leadsto \ \ \) \(\ds A\) \(=\) \(\ds \frac 1 b\)


Summarising:

\(\ds A\) \(=\) \(\ds \frac 1 b\)
\(\ds B\) \(=\) \(\ds -\frac a b\)

Hence the result.

$\blacksquare$