Primitive of Reciprocal of x by x cubed plus a cubed squared

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {\d x} {x \paren {x^3 + a^3}^2} = \frac 1 {3 a^3 \paren {x^3 + a^3} } + \frac 1 {3 a^6} \ln \size {\frac {x^3} {x^3 + a^3} }$


Proof

\(\ds \int \frac {\d x} {x \paren {x^3 + a^3}^2}\) \(=\) \(\ds \int \frac {a^3 \rd x} {a^3 x \paren {x^3 + a^3}^2}\) multiplying top and bottom by $a^3$
\(\ds \) \(=\) \(\ds \int \frac {\paren {x^3 + a^3 - x^3} \rd x} {a^3 x \paren {x^3 + a^3}^2}\)
\(\ds \) \(=\) \(\ds \frac 1 {a^3} \int \frac {\paren {x^3 + a^3} \rd x} {x \paren {x^3 + a^3}^2} - \frac 1 {a^3} \int \frac {x^3 \rd x} {x \paren {x^3 + a^3}^2}\) Linear Combination of Primitives
\(\ds \) \(=\) \(\ds \frac 1 {a^3} \int \frac {\d x} {x \paren {x^3 + a^3} } - \frac 1 {a^3} \int \frac {x^2 \rd x} {\paren {x^3 + a^3}^2}\) simplifying
\(\ds \) \(=\) \(\ds \frac 1 {a^3} \paren {\frac 1 {3 a^3} \ln \size {\frac {x^3} {x^3 + a^3} } } - \frac 1 {a^3} \int \frac {x^2 \rd x} {\paren {x^3 + a^3}^2}\) Primitive of $\dfrac 1 {x \paren {x^3 + a^3} }$
\(\ds \) \(=\) \(\ds \frac 1 {a^3} \paren {\frac 1 {3 a^3} \ln \size {\frac {x^3} {x^3 + a^3} } } - \frac 1 {a^3} \paren {\frac {-1} {3 \paren {x^3 + a^3} } }\) Primitive of $\dfrac {x^2} {\paren {x^3 + a^3}^2}$
\(\ds \) \(=\) \(\ds \frac 1 {3 a^3 \paren {x^3 + a^3} } + \frac 1 {3 a^6} \ln \size {\frac {x^3} {x^3 + a^3} }\) simplifying

$\blacksquare$


Sources