Primitive of Reciprocal of x by x squared minus a squared squared/Partial Fraction Expansion

From ProofWiki
Jump to navigation Jump to search

Lemma for Primitive of Reciprocal of $x \paren {x^2 - a^2}^2$

$\dfrac 1 {x \paren {x^2 - a^2}^2} \equiv \dfrac 1 {a^4 x} + \dfrac {-x} {a^4 \paren {x^2 - a^2} } + \dfrac x {a^2 \paren {x^2 - a^2}^2}$


Proof

\(\ds \frac 1 {x \paren {x^2 - a^2}^2}\) \(=\) \(\ds \frac 1 {x \paren {x + a}^2 \paren {x - a}^2}\) Difference of Two Squares
\(\ds \) \(\equiv\) \(\ds \frac A {x + a} + \frac B {\paren {x + a}^2} + \frac C {x - a} + \frac D {\paren {x - a}^2} + \frac E x\)
\(\ds \leadsto \ \ \) \(\ds 1\) \(\equiv\) \(\ds A x \paren {x^2 - a^2} \paren {x - a} + B x \paren {x - a}^2\) multiplying through by $x \paren {x^2 - a^2}^2$
\(\ds \) \(\) \(\, \ds + \, \) \(\ds C x \paren {x^2 - a^2} \paren {x + a} + D x \paren {x + a}^2 + E \paren {x^2 - a^2}^2\)
\(\text {(1)}: \quad\) \(\ds \) \(\equiv\) \(\ds A x^4 - A a x^3 - A a^2 x^2 + A a^3 x + B x^3 - 2 B a x^2 + B a^2 x\) multiplying out
\(\ds \) \(\) \(\, \ds + \, \) \(\ds C x^4 + C a x^3 - C a^2 x^2 - C a^3 x + D x^3 + 2 D a x^2 + D a^2 x\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds E x^4 - 2 E a^2 x^2 + E a^4\)


Setting $x = a$ in $(1)$:

\(\ds D a \paren {2 a}^2\) \(=\) \(\ds 1\)
\(\ds \leadsto \ \ \) \(\ds D\) \(=\) \(\ds \frac 1 {4 a^3}\)


Setting $x = -a$ in $(1)$:

\(\ds B \paren {-a} \paren {-2 a}^2\) \(=\) \(\ds 1\)
\(\ds \leadsto \ \ \) \(\ds B\) \(=\) \(\ds \frac {-1} {4 a^3}\)


Setting $x = 0$ in $(1)$:

\(\ds E a^4\) \(=\) \(\ds 1\)
\(\ds \leadsto \ \ \) \(\ds E\) \(=\) \(\ds \frac 1 {a^4}\)


Equating coefficients of $x^4$ in $(1)$:

\(\ds 0\) \(=\) \(\ds A + C + E\)
\(\ds \leadsto \ \ \) \(\ds -A - \frac 1 {a^4}\) \(=\) \(\ds C\)


Equating coefficients of $x^3$ in $(1)$:

\(\ds - A a + C a + B + D\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds - A a + C a + \frac 1 {4 a^3} + \frac {-1} {4 a^3}\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds -A a + \paren {-A - \frac 1 {a^4} } a\) \(=\) \(\ds 0\) as $C = -A -\dfrac 1 {a^4}$
\(\ds \leadsto \ \ \) \(\ds -2 A - \frac 1 {a^4}\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds A\) \(=\) \(\ds \frac {-1} {2 a^4}\)
\(\ds \leadsto \ \ \) \(\ds C\) \(=\) \(\ds \frac {-1} {2 a^4}\)


Summarising:

\(\ds A\) \(=\) \(\ds \frac {-1} {2 a^4}\)
\(\ds B\) \(=\) \(\ds \frac {-1} {4 a^3}\)
\(\ds C\) \(=\) \(\ds \frac {-1} {2 a^4}\)
\(\ds D\) \(=\) \(\ds \frac 1 {4 a^3}\)
\(\ds E\) \(=\) \(\ds \frac 1 {a^4}\)


Thus:

\(\ds \frac 1 {x \paren {x^2 - a^2}^2}\) \(\equiv\) \(\ds \frac {-1} {2 a^4 \paren {x + a} } + \frac {-1} {4 a^3 \paren {x + a}^2} + \frac {-1} {2 a^4 \paren {x - a} } + \frac 1 {4 a^3 \paren {x - a}^2} + \frac 1 {a^4 x}\)
\(\ds \) \(\equiv\) \(\ds - \frac {\paren {x - a} + \paren {x + a} } {2 a^4 \paren {x + a} \paren {x - a} } + \frac {\paren {x + a}^2 - \paren {x - a}^2} {4 a^3 \paren {x + a}^2 \paren {x - a}^2} + \frac 1 {a^4 x}\) common denominators
\(\ds \) \(\equiv\) \(\ds \frac {- 2 x} {2 a^4 \paren {x^2 - a^2} } + \frac {\paren {x^2 + 2 a x + a^2} - \paren {x^2 - 2 a x + a^2} } {4 a^3 \paren {x^2 - a^2}^2} + \frac 1 {a^4 x}\) simplifying
\(\ds \) \(\equiv\) \(\ds \frac {-x} {a^4 \paren {x^2 - a^2} } + \frac {4 a x} {4 a^3 \paren {x^2 - a^2}^2} + \frac 1 {a^4 x}\) simplifying
\(\ds \) \(\equiv\) \(\ds \dfrac 1 {a^4 x} + \dfrac {-x} {a^4 \paren {x^2 - a^2} } + \dfrac x {a^2 \paren {x^2 - a^2}^2}\) simplifying and rearranging

Hence the result.

$\blacksquare$