Primitive of Reciprocal of x squared by a x + b/Partial Fraction Expansion

From ProofWiki
Jump to navigation Jump to search

Lemma for Primitive of $\dfrac 1 {x^2 \paren {a x + b} }$

$\dfrac 1 {x^2 \paren {a x + b} } \equiv -\dfrac a {b^2 x} + \dfrac 1 {b x^2} + \dfrac {a^2} {b^2 \paren {a x + b} }$


Proof

\(\ds \dfrac 1 {x^2 \paren {a x + b} }\) \(\equiv\) \(\ds \dfrac A x + \dfrac B {x^2} + \dfrac C {a x + b}\)
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds 1\) \(\equiv\) \(\ds A x \paren {a x + b} + B \paren {a x + b} + C x^2\) multiplying through by $x^2 \paren {a x + b}$
\(\ds \) \(\equiv\) \(\ds A a x^2 + A b x + B a x + B b + C x^2\) multiplying everything out


Setting $a x + b = 0$ in $(1)$:

\(\ds a x + b\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds -\frac b a\)
\(\ds \leadsto \ \ \) \(\ds C \paren {-\frac b a}^2\) \(=\) \(\ds 1\) substituting for $x$ in $(1)$: terms in $a x + b$ are all $0$
\(\text {(2)}: \quad\) \(\ds \leadsto \ \ \) \(\ds C\) \(=\) \(\ds \frac {a^2} {b^2}\)


Equating constants in $(1)$:

\(\ds 1\) \(=\) \(\ds B b\)
\(\ds \leadsto \ \ \) \(\ds B\) \(=\) \(\ds \frac 1 b\)


Equating $2$nd powers of $x$ in $(1)$:

\(\ds 0\) \(=\) \(\ds A a + C\)
\(\ds \leadsto \ \ \) \(\ds A\) \(=\) \(\ds -\frac a {b^2}\) substituting for $C$ from $(2)$ and rearranging


Summarising:

\(\ds A\) \(=\) \(\ds -\frac a {b^2}\)
\(\ds B\) \(=\) \(\ds \frac 1 b\)
\(\ds C\) \(=\) \(\ds \frac {a^2} {b^2}\)

Hence the result.

$\blacksquare$