Primitive of Reciprocal of x squared plus a squared/Arctangent Form/Proof 4

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {\d x} {x^2 + a^2} = \frac 1 a \arctan \frac x a + C$


Proof

\(\ds \map {\dfrac \d {\d x} } {\frac 1 a \arctan \frac x a}\) \(=\) \(\ds \frac 1 a \paren {\dfrac a {a^2 + x^2} }\) Derivative of Arctangent Function: Corollary and Derivative of Constant Multiple
\(\ds \) \(=\) \(\ds \dfrac 1 {a^2 + x^2}\) simplification
\(\ds \leadsto \ \ \) \(\ds \int \frac {\d x} {x^2 + a^2}\) \(=\) \(\ds \frac 1 a \arctan \frac x a + C\) Fundamental Theorem of Calculus

$\blacksquare$


Sources