Primitive of Root of a x squared plus b x plus c over x

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a \in \R_{\ne 0}$.

Then:

$\ds \int \frac {\sqrt {a x^2 + b x + c} } x \rd x = \sqrt {a x^2 + b x + c} + \frac b 2 \int \frac {\d x} {\sqrt {a x^2 + b x + c} } + c \int \frac {\d x} {x \sqrt {a x^2 + b x + c} }$


Proof

\(\ds \) \(\) \(\ds \int \frac {\sqrt {a x^2 + b x + c} } x \rd x\)
\(\ds \) \(=\) \(\ds \int \frac {a x^2 + b x + c} {x \sqrt {a x^2 + b x + c} } \rd x\) multiplying top and bottom by $\sqrt {a x^2 + b x + c}$
\(\ds \) \(=\) \(\ds a \int \frac {x^2 \rd x} {x \sqrt {a x^2 + b x + c} } + b \int \frac {x \rd x} {x \sqrt {a x^2 + b x + c} } + c \int \frac {\d x} {x \sqrt {a x^2 + b x + c} }\) Linear Combination of Primitives
\(\ds \) \(=\) \(\ds a \int \frac {x \rd x} {\sqrt {a x^2 + b x + c} } + b \int \frac {\d x} {\sqrt {a x^2 + b x + c} } + c \int \frac {\d x} {x \sqrt {a x^2 + b x + c} }\) simplifying
\(\ds \) \(=\) \(\ds a \paren {\frac {\sqrt {a x^2 + b x + c} } a - \frac b {2 a} \int \frac {\d x} {\sqrt {a x^2 + b x + c} } }\) Primitive of $\dfrac x {\sqrt {a x^2 + b x + c} }$
\(\ds \) \(\) \(\, \ds + \, \) \(\ds b \int \frac {\d x} {\sqrt {a x^2 + b x + c} } + c \int \frac {\d x} {x \sqrt {a x^2 + b x + c} }\)
\(\ds \) \(=\) \(\ds \sqrt {a x^2 + b x + c} + \frac b 2 \int \frac {\d x} {\sqrt {a x^2 + b x + c} } + c \int \frac {\d x} {x \sqrt {a x^2 + b x + c} }\) simplifying

$\blacksquare$


Sources