Primitive of Sine of a x over x

From ProofWiki
Jump to navigation Jump to search

Theorem

\(\ds \int \frac {\sin a x \d x} x\) \(=\) \(\ds \sum_{k \mathop \ge 0} \frac {\paren {-1}^k \paren {a x}^{2 k + 1} } {\paren {2 k + 1} \paren {2 k + 1}!} + C\)
\(\ds \) \(=\) \(\ds a x - \frac {\paren {a x}^3} {3 \times 3!} + \frac {\paren {a x}^5} {5 \times 5!} - \cdots\)


Proof

\(\ds \int \frac {\sin a x \rd x} x\) \(=\) \(\ds \int \frac 1 x \paren {\sum_{k \mathop = 0}^\infty \paren {-1}^k \frac {\paren {a x}^{2 k + 1} } {\paren {2 k + 1}!} } \rd x\) Definition of Real Sine Function
\(\text {(1)}: \quad\) \(\ds \) \(=\) \(\ds \sum_{k \mathop = 0}^\infty \frac {\paren {-1}^k a^{2 k + 1} } {\paren {2 k + 1}!} \int \frac 1 x \paren {x^{2 k + 1} } \rd x\) Linear Combination of Primitives
\(\ds \) \(=\) \(\ds \sum_{k \mathop = 0}^\infty \frac {\paren {-1}^k a^{2 k + 1} } {\paren {2 k + 1}!} \int x^{2 k} \rd x\) simplifying
\(\ds \) \(=\) \(\ds \sum_{k \mathop = 0}^\infty \frac {\paren {-1}^k a^{2 k + 1} } {\paren {2 k + 1}!} \frac {x^{2 k + 1} } {2 k + 1} + C\) Primitive of Power
\(\ds \) \(=\) \(\ds \sum_{k \mathop \ge 0} \frac {\paren {-1}^k \paren {a x}^{2 k + 1} } {\paren {2 k + 1} \paren {2 k + 1}!} + C\) simplifying

The validity of $(1)$ follows from Sine Function is Absolutely Convergent.

$\blacksquare$


Also see


Sources