Primitive of Sine x by Logarithm of Sine x

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \sin x \map \ln {\sin x} \rd x = \cos x \paren {1 - \map \ln {\sin x} } + \ln \size {\tan \frac x 2} + C$


Proof

We have:

\(\ds \map {\frac \d {\d x} } {\map \ln {\sin x} }\) \(=\) \(\ds \map {\frac \d {\map \d {\sin x} } } {\map \ln {\sin x} } \map {\frac \d {\d x} } {\sin x}\) Chain Rule for Derivatives
\(\ds \) \(=\) \(\ds \frac {\cos x} {\sin x}\) Derivative of Logarithm Function, Derivative of Sine Function

We also have, by Primitive of Sine Function:

$\ds \int \sin x \rd x = -\cos x + C$

So:

\(\ds \int \sin x \map \ln {\sin x} \rd x\) \(=\) \(\ds -\cos x \map \ln {\sin x} + \int \frac {\cos^2 x} {\sin x} \rd x\) Integration by Parts
\(\ds \) \(=\) \(\ds -\cos x \map \ln {\sin x} + \int \frac {1 - \sin^2 x} {\sin x} \rd x\) Sum of Squares of Sine and Cosine
\(\ds \) \(=\) \(\ds -\cos x \map \ln {\sin x} + \int \csc x \rd x - \int \sin x \rd x\)
\(\ds \) \(=\) \(\ds -\cos x \map \ln {\sin x} + \ln \size {\tan \frac x 2} + \cos x + C\) Primitive of Sine Function, Primitive of $\csc x$: Tangent Form
\(\ds \) \(=\) \(\ds \cos x \paren {1 - \map \ln {\sin x} } + \ln \size {\tan \frac x 2} + C\)

$\blacksquare$