Primitive of Square of Arccosine of x over a

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \paren {\arccos \frac x a}^2 \rd x = x \paren {\arccos \frac x a}^2 - 2 x - 2 \sqrt {a^2 - x^2} \arccos \frac x a + C$


Proof

Let:

\(\ds u\) \(=\) \(\ds \arccos \frac x a\)
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \cos u\) \(=\) \(\ds \frac x a\) Definition of Real Arccosine
\(\text {(2)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \sin u\) \(=\) \(\ds \sqrt {1 - \frac {x^2} {a^2} }\) Sum of Squares of Sine and Cosine


Then:

\(\ds \int \paren {\arccos \frac x a}^2 \rd x\) \(=\) \(\ds -a \int u^2 \sin u \rd x\) Primitive of Function of Arccosine
\(\ds \) \(=\) \(\ds -a \paren {2 u \sin u + \paren {2 - u^2} \cos u} + C\) Primitive of $x^2 \sin a x$ where $a = 1$
\(\ds \) \(=\) \(\ds -a \paren {2 \arccos \frac x a \sqrt {1 - \frac {x^2} {a^2} } + \paren {2 - \paren {\arccos \frac x a}^2} \frac x a} + C\) substituting for $u$, $\sin u$ and $\cos u$
\(\ds \) \(=\) \(\ds x \paren {\arccos \frac x a}^2 - 2 x - 2 \sqrt {a^2 - x^2} \arccos \frac x a + C\) simplifying

$\blacksquare$


Also see


Sources