Primitive of Square of Cosine of a x over Sine of a x

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {\cos^2 a x \rd x} {\sin a x} = \frac {\cos a x} a + \frac 1 a \ln \size {\tan \frac {a x} 2} + C$


Proof

\(\ds \int \frac {\cos^2 a x \rd x} {\sin a x}\) \(=\) \(\ds \int \frac {\paren {1 - \sin^2 a x} \rd x} {\sin a x}\) Sum of Squares of Sine and Cosine
\(\ds \) \(=\) \(\ds \int \frac {\d x} {\sin a x} - \int \sin a x \rd x\) Linear Combination of Primitives
\(\ds \) \(=\) \(\ds \int \csc a x \rd x - \int \sin a x \rd x\) Cosecant is Reciprocal of Sine
\(\ds \) \(=\) \(\ds \frac {\cos a x} a + \int \csc a x \rd x + C\) Primitive of $\sin a x$
\(\ds \) \(=\) \(\ds \frac {\cos a x} a + \frac 1 a \ln \size {\tan \frac {a x} 2} + C\) Primitive of $\csc a x$

$\blacksquare$


Also see


Sources